
Software Vulnerability
Detection and Repair

Prof. Abhik Roychoudhury

National University of Singapore

1

KLEE Workshop London 2018

2

Vulnerability
Discovery

Binary
Hardening

Verification Data
Protection

Agency
Collaboration

Industry
Collaboration

Education – NUS (Bachelors
in Infosec)

Research Outputs – Publications, Tools, Academic Collaboration,
Exchanges, Seminars, Workshops

Enhancing local
capabilities

Space of Problems

´ Fuzz Testing
´ Feed semi-random inputs to find hangs and crashes

´ Continuous fuzzing
´ Incrementally find new “problems” in software

´ Crash reproduction
´ Re-construct a reported crash, crashing input not included due to privacy

´ Reaching nooks and corners

´ Localizing reported observable errors
´ Patching reported errors from input-output examples

3

KLEE Workshop London 2018

Space of Techniques

Search
´ Random

´ Biased-random

´ Genetic (AFL Fuzzer)

´ …

´ Low set-up overhead

´ Fast, less accurate

´ Use objective function to steer

Symbolic Execution
´ Dynamic Symbolic execution
´ Concolic Execution
´ Cluster paths based on symbolic

expressions of variables
´

´ High set-up overhead
´ Slow, more accurate
´ Use logical formula to steer

4

KLEE Workshop London 2018

In this talk …

Search
´ Enhance the effectiveness of

search techniques, with symbolic
execution as inspiration

´ [CCS16, CCS17, ICSE15]

Symbolic Execution
´ Explore capabilities of symbolic

execution beyond search, in
program repair

´ [ICSE13, 15, 16, 18]

5

KLEE Workshop London 2018

History of fuzzing
Developed by Barton Miller, see

http://pages.cs.wisc.edu/~bart/fuzz/
Fuzz testing is a simple technique for feeding random input to applications. The
approach has three characteristics.

´ The input is random. We do not use any model of program behavior,
application type, or system description. This is sometimes called black box
testing.

´ The reliability criteria is simple: if the application crashes or hangs, it is
considered to fail the test, otherwise it passes. Note that the application
does not have to respond in a sensible manner to the input, and it can
even quietly exit.

´ As a result of the first two characteristics, fuzz testing can be automated to
a high degree and results can be compared across applications, operating
systems, and vendors.

6

KLEE Workshop London 2018

Grey-box Fuzzing, as in AFL7

Mutators

Test suite

Mutated files

Input Queue

EnqueueDequeue

KLEE Workshop London 2018

Grey-box Fuzzing Algorithm8

• Input: Seed Inputs S
• 1: T� = �
• 2: T = S
• 3: if T = � then
• 4: add empty file to T
• 5: end if
• 6: repeat
• 7: t = chooseNext(T)
• 8: p = assignEnergy(t)
• 9: for i from 1 to p do
• 10: t0 = mutate_input(t)
• 11: if t0 crashes then
• 12: add t0 to T�
• 13: else if isInteresting(t0) then
• 14: add t0 to T
• 15: end if
• 16: end for
• 17: until timeout reached or abort-signal
• Output: Crashing Inputs T�

KLEE Workshop London 2018

Programming by experienced people

Schematic

´ if (condition1)

´ return // short path, frequented by many many inputs

´ else if (condition2)

´ exit // short paths, frequented by many inputs

´ else ….

9

Prioritize low probability paths10

ü Use grey-box fuzzer which keeps track of path id for a test.
ü Find probabilities that fuzzing a test t which exercises π leads to

an input which exercises π’

ü Higher weightage to low probability paths discovered, to
gravitate to those -> discover new states in Markov Chain with
minimal effort.

π π'

1 void crashme (char* s) {
2 if (s[0] == ’b’)
3 if (s[1] == ’a’)
4 if (s[2] == ’d’)
5 if (s[3] == ’!’)
6 abort ();
7 }

p

Power-Schedules
11

´Constant:
´AFL uses this schedule (fuzzing ~1 minute)
´ a(i) .. how AFL judges fuzzing time for the test exercising path i

´Cut-off Exponential:

p(i) = a(i)

p(i) = 0, if f(i) > µ
min(a(i)/β*2s(i), M) otherwise

β is a constant
s(i) #times the input exercising path i has been chosen for

fuzzing
f(i) #fuzz exercising path i (path-frequency)
µ mean #fuzz exercising a discovered path (avg. path-

frequency)
M maximum energy expendable on a state

KLEE Workshop London 2018

Results12

Independent evaluation found crashes 19x faster on
DARPA Cyber Grand Challenge (CGC) binaries

Integrated into main-line of AFL fuzzer within a year of publication (CCS16), which is
used on a daily basis by corporations for finding vulnerabilities

KLEE Workshop London 2018

Comments on the
technologies

1

Use of Grey-box Fuzzing

KLEE Workshop London 2018

14

´ Greybox Fuzzing is frequently used, daily in corporations
´ State-of-the-art in automated vulnerability detection

´ Extremely efficient coverage-based input generation
´ All program analysis before/at instrumentation time.

´ Start with a seed corpus, choose a seed file, fuzz it.

´ Add to corpus only if new input increases coverage.

´ Cannot be directed, unlike symbolic execution!

In this talk …

Search
´ Enhance the effectiveness of

search techniques, with symbolic
execution as inspiration

´ Enhance coverage, how to make
it directed?

Symbolic Execution
´ Explore capabilities of symbolic

execution beyond directed
search

15

KLEE Workshop London 2018

Directed Fuzzing instead of Coverage
16

Crash reproducing supports
- In-house debugging and fixing
- Vulnerability checking

KLEE Workshop London 2018

Using symbolic execution17

Program binary

Benign input files

(Crash instruction, loaded modules,
call stack, register values) Crash input files

Hercules
Toolset

1. Directed Search Algorithm
2. Guided Selective Symbolic Execution

KLEE Workshop London 2018

Symbolic Analyzer18

Reproduced vulnerabilities in Acrobat Reader, Media Player with 24 hour time bound

KLEE Workshop London 2018

(Earlier) View-point19

´ Directed Fuzzing: classical constraint satisfaction prob.

´ Program analysis to identify program paths
that reach given program locations.

´ Symbolic Execution to derive path conditions
for any of the identified paths.

´ Constraint Solving to find an input that
´ satisfies the path condition and thus
´ reaches a program location that was given.

φ1 = (x>y)�(x+y>10)
φ2 = ¬(x>y)�(x+y>10)

x > y

a = x a = y

x+y>10

b = a

return b

KLEE Workshop London 2018

(Later) View-point20

´ Directed Fuzzing as optimization problem!
1. Instrumentation Time:

• Instrument program to aggregate distance values.

2. Runtime, for each input

• decide how long to be fuzzed based on distance.

• If input is closer to the targets, it is fuzzed for longer.

• If input is further away from the targets, it is fuzzed for shorter.

KLEE Workshop London 2018

Power Schedules - Recap21

• Input: Seed Inputs S
• 1: T� = �
• 2: T = S
• 3: if T = � then
• 4: add empty file to T
• 5: end if
• 6: repeat
• 7: t = chooseNext(T)
• 8: p = assignEnergy(t)
• 9: for i from 1 to p do
• 10: t0 = mutate_input(t)
• 11: if t0 crashes then
• 12: add t0 to T�
• 13: else if isInteresting(t0) then
• 14: add t0 to T
• 15: end if
• 16: end for
• 17: until timeout reached or abort-signal
• Output: Crashing Inputs T�

KLEE Workshop London 2018

Instrumentation22

´ Function-level target distance using call graph (CG)

´ BB-level target distance using control-flow graph (CFG)
1. Identify target BBs and

assign distance 0

2. Identify BBs that
call functions and
assign 10*FLTD

3. For each BB, compute harmonic
mean of (length of shortest path to
any function-calling BB + 10*FLTD).

CFG for function b

8.7

11

10

30

13

12

N/A

KLEE Workshop London 2018

Directed fuzzing as optimization23

´ Integrating Simulated Annealing as power schedule
´ In the beginning (t = 0min),

assign the same energy
to all seeds.

´ Later (t=10min), assign
a bit more energy to
seeds that are closer.

´ At exploitation (t=80min),
assign maximal energy to
seeds that are closest.

KLEE Workshop London 2018

In this talk …

Search
´ Enhance the effectiveness of

search techniques, with symbolic
execution as inspiration

´ Enhance coverage

´ Achieve directed search

Symbolic Execution
´ Explore capabilities of symbolic

execution beyond directed
search

24

84 139 59
AFLGo KLEE

KLEE Workshop London 2018

Program Synthesis and Repair25

Synthesizer

Input-
output

Examples

Quality
Criterion

Program

Vulnerable
program

Tests
Repaired
Program

Repair
System

KLEE Workshop London 2018

Search-based approach26

´ 2009: GenProg [Weimer-et-al-ICSE]

EVALUATE
FITNESS

DISCARD

ACCEPT

MUTATEKLEE Workshop London 2018

Over-fitting in Tests -> Program27

Avoid

if (input1) return output1
else if (input2) return output2
else if (input3) return output3
….

Vulnerable
program

Tests

Repaired
Program

Repair
System

ARTIFACTS
(symbolic
formulae)

Generalize beyond the provided tests
using symbolic reasoning.

KLEE Workshop London 2018

View-point on Repair

KLEE Workshop London 2018

28

1. Where to fix –
in which line?

2. Generate the
candidate patches in
this line.

3. Validate the
candidate patches.

1. Where to fix –
in which line?

2. What values should
be returned by these
lines? <inp=1, ret=0>

3. What are the
expressions which will
return these values?

Syntactic approach
Semantic approach

Example29

1 int is_upward(int inhibit, int up_sep, int down_sep){
2 int bias;
3 if (inhibit)
4 bias = down_sep; // bias= up_sep + 100
5 else bias = up_sep ;
6 if (bias > down_sep)
7 return 1;
8 else return 0;
9 }

inhibit up_sep down_se
p

Observed
output

Expected
Output

Result

1 0 100 0 0 pass
1 11 110 0 1 fail
0 100 50 1 1 pass
1 -20 60 0 1 fail
0 0 10 0 0 passKLEE Workshop London 2018

Patch synthesis
30

KLEE Workshop London 2018

Patch synthesis31

´ Accumulated constraints
´ f(1,11, 110) > 110 Ù

´ f(1,0,100) ≤ 100 Ù

´ …

´ Find a f satisfying this constraint
´ By fixing the set of operators appearing in f

´ Candidate methods
´ Search over the space of expressions

´ Program synthesis with fixed set of operators

´ Generated fix
´ f(inhibit,up_sep,down_sep) = up_sep + 100

KLEE Workshop London 2018

Semantic Repair32

Test input

Concret
e
values

Expected output of
program

Output:
Value-set or Constraint

Symbolic
execution

Program

Concrete Execution

KLEE Workshop London 2018

High-level view33

Buggy Program

…

var = a + b – c;x

Test input

Concrete Execution

Symbolic Execution with x as the
only unknown

Path conditions,
Output Expressions

x = f(Live Vars)

Get properties of
function f via
symbolic
execution.

Construct a
function f which
satisfies these
properties !

KLEE Workshop London 2018

Program Repair given tests34

´ Generate –and-test patches (GenProg, CMU/Michigan)

´ Specification inference and patch synthesis

´ Infer specification or properties about the patch to be synthesized.

´ Meet the specification by enumeration, or by solving constraints.

´ Various works – SemFix, Angelix (NUS), Nopol (KTH), SPR (MIT), …

´ Ordering of search space of patches

´ Use minimality to prioritize the search space. (NUS)

´ Use learning approaches to prioritize the search space. (MIT)

´ Patch templates can be learnt from human fixes. (HKUST)

KLEE Workshop London 2018

http://angelix.io [ICSE13,16]35

35KLEE

Clang

Runtime

Synthesis
Z3

Buggy
Source

Instrumented
Source

Suspicious
Locations

Debugg
er

Angelic
Forest

Clang

Instrumented
Source

Patch

KLEE Workshop London 2018

State-of-the technology36

Defect Fixed
Expressions

Libtiff-4a24508-cc79c2b 2
Libtiff-829d8c4-036d7bb 2
CoreUtils-00743a1f-ec48bead 3
CoreUtils-1dd8a331-d461bfd2 2
CoreUtils-c5ccf29b-a04ddb8d 3

Subject LoC Repair time (min)
wireshark 2814K 23
php 1046K 62
gzip 491K 4
gmp 145K 14
libtiff 77K 14

Scalability
Quality: Less functionality-deleting repair than any other tool.

KLEE Workshop London 2018

Heartbleed37

1 i f (hbtype == TLS1 HB REQUEST) {
2 . . .
3 memcpy (bp , pl , payload) ;
4 . . .
5 }

(a) The buggy part of the Heartbleed-
vulnerable OpenSSL

1 i f (hbtype == TLS1 HB REQUEST
2 && payload + 18 < s->s3->rrec.length) {
3 . . .
4 }

(b) A fix generated automatically

1 if (1 + 2 + payload + 16 > s->s3->rrec.length)
2 return 0;
3 . . .
4 i f (hbtype == TLS1_HB_REQUEST) {
5 . . .
6 }
7 e l s e i f (hbtype == TLS1_HB_RESPONSE) {
8 . . .
9 }
10 r e t u r n 0 ;

(c) The developer-provided repair

KLEE Workshop London 2018

Use a reference implementation38

1 int search(int x, int a[], int length) {
2 int i;
3 for (i=0; i<length; i++) {
4 if (x == a[i])
5 return i;
6 }
7 return −1;
8 }

(a) Correct linear search

1 int search(int x, int a[], int length) {
2 int L = 0;
3 int R = length-1;
4 do {
5 int m = (L+R)/2;
6 if (x == a[m]) {
7 return m;
8 } else if (x < a[m]) { // bug fix: x > a[m]
9 L = m+1;
10 } else {
11 R = m-1;
12 }
13 } while (L <= R);
14 return -1;
15 }

(b) Buggy binary search

User-define condition: length = 3 & a[0] < a[1] < a[2]

Verification condition

Experiments on embedded Linux Busybox

KLEE Workshop London 2018

SemGraft (ICSE18)39

Verification
condition

Counterexample

Is SAT?
Negate

Patch found

Buggy
program

Is SAT?

Angelic
forest

Is SAT?

Component
library

Candidate
patch

No

Yes

Yes

Yes

Buggy
program

Reference
program

Symbolic
analysis

KLEE Workshop London 2018

SemGraft results40

Program Commit Bug Angelix SemGraft
sed c35545a Handle empty match Correct Correct
seq f7d1c59 Wrong output Correct Correct
sed 7666fa1 Wrong output Incorrect Correct
sort d1ed3e6 Wrong output Incorrect Correct
seq d86d20b Don’t accepts 0 Incorrect Correct
sed 3a9365e Handle s/// Incorrect Correct

Program Commit Bug Angelix SemGraft
mkdir f7d1c59 Segmentation fault Incorrect Correct
mkfifo cdb1682 Segmentation fault Incorrect Correct
mknod cdb1682 Segmentation fault Incorrect Correct
copy f3653f0 Failed to copy a file Correct Correct
md5sum 739cf4e Segmentation fault Correct Correct
cut 6f374d7 Wrong output Incorrect Correct

GNU Coreutils
as reference

Linux Busybox
as reference

Novel applications41

Use program repair in intelligent
tutoring systems to give the
students’ individual attention.

Study in IIT-Kanpur (FSE17)KLEE Workshop London 2018

KLEE Workshop London 2018

Acknowledgments42

Co-authors:

Umair Ahmed & Amey Karkare (IIT-K)
Marcel Boehme (Monash),
Satish Chandra (Facebook),
Lars Grunske & Yannic Noller(Humboldt)
Sergey Mechtaev (NUS)
HDT Nguyen and Dawei Qi
Manh-Dung Nguyen & Van-Thuan Pham (NUS)
Mukul Prasad & Hiroaki Yoshida (Fujitsu),
Shin Hwei Tan (SUSTech)
Jooyong Yi (Innopolis)

Relevant papers:
http://www.comp.nus.edu.sg/~abhik/projects/Repair/index.html
http://www.comp.nus.edu.sg/~abhik/projects/Fuzz/

Grants:

NRF NCR program TSUNAMi
project (2015-2020)

DSO grant (2013-15).

Airbus grant (2017-18).

KLEE Workshop London 2018

Vulnerability detection and patching

Search
´ Enhance the effectiveness of

search techniques, with symbolic
execution as inspiration

´ Enhance coverage

´ Achieve directed search

Symbolic Execution
´ Explore capabilities of symbolic

execution beyond directed
search

´ Specification inference

´ Program synthesis/ repair

43

KLEE Workshop London 2018

For more details

Own website
´ http://www.comp.nus.edu.sg/~abhik

Project website

´ http://www.comp.nus.edu.sg/~tsunami/

KLEE Workshop London 2018

44

Links on Repair
http://www.comp.nus.edu.sg/~abhik/projects/Repair/index.html

Links on Fuzzing
http://www.comp.nus.edu.sg/~abhik/projects/Fuzz/

Let us talk in the reception now, or tomorrow – if you are interested.

Reflections on Symbolic Execution

KLEE Workshop London 2018

45

Reachability of a location. e.g. KATCH, AFLGo

Bug finding. e.g. KLEE, AFLFast

Specification Inference from buggy program e.g. SemFix, Angelix

