=BANUS
National University
of Singapore

Software Vulnerabillity
Detection and Repair

Prof. Abhik Roychoudhury

National University of Singapore

oooooooooooooooooooooo

Enhancing local

capabilities . BE & S

Education — NUS (Bachelors
in Infosec)

Vulnerability Binary
Discovery Hardening

Industry
Collaboration

Agen
Collabg

Data

Verification [T o

Research Outputs — Publications, Tools, Academic Collaboration,
Exchanges, Seminars, Workshops

National University
of Singapore

NUS
Space of Problems

» Fuzz Testing
®» Feed semi-random inputs to find hangs and crashes
= Continvous fuzzing

» |ncrementally find new “problems” in software

= Crashreproduction

» Re-construct areported crash, crashing input not included due to privacy
= Reaching nooks and corners
» |ocalizing reported observable errors

» Paiching reported errors from input-output examples

KLEE Workshop London 2018

Space of Technigues

Search
Random

Biased-random

Genetic (AFL Fuzzer)

.

Low sef-up overhead
Fast, less accurate

Use objective function to steer

)

KLEE Workshop London 2018

N US
95

National University
of Singapore

Symbolic Execution
Dynamic Symbolic execution
Concolic Execution

Cluster paths based on symbolic
expressions of variables

/lll\

High sef-up overhead
Slow, more accurate
Use logical formula to steer

National University
of Singapore

N US
95

In this talk ...

Search Symbolic Execution

®» Enhance the effectiveness of » Explore capabilities of symbolic
search techniques, with symbolic executionbeyond search, in
execution as inspiration program repair

» [CCS16, CCS17, ICSE15] » [ICSE13, 15, 16, 18]

KLEE Workshop London 2018

SANUS
History of fuzzing

Developed by Barton Miller, see
http://pages.cs.wisc.edu/~bart/fuzz/

Fuzz testing is a simple technique for feeding random input to applications. The
approach has three characteristics.

» The inpuftis random. We do not use any model of program behavior,
application type, or system description. Thisis sometimes called black box
testing.

» The reliability criteria is simple: if the application crashes or hangs, it is
considered fo fail the test, otherwise it passes. Note that the application
does notf have to respond in a sensible manner fo the inpuf, and it can
even quietly exit.

» As g result of the first fwo characteristics, fuzz testing can be automated to
a high degree and results can be compared across applications, operating
systems, and vendors.

KLEE Workshop London 2018

Grey-box Fuzzing, as in AFL

:

Input Queue

Dequeue ‘i—‘\ ‘:\ ‘ Enqueue

KLEE Workshop London 2018

Mutated files

Hi=]

Test suite

National University
of Singapore

NUS
Grey-box Fuzzing Algorithm

* Input: Seed Inputs S

e 1:Tx=2

e 2:T=S

+ 3:ifT=92then

. 4 add empty fileto T

« 5. endif

+ 6. repeat

- 7 t = chooseNext(T)

. 8 p = assignEnergy (t)

e 9 forifrom 1 to p do

« 10: t0 = mutate_input(t)

o 11: if 10 crashes then

> 12 add 10 fo Ty Exercises common

e 13: else if isinteresting (10) then path that rejects Short paths rejecting syntactically
. 14 add 0toT invalid PDF ;g\éafl:: c;zztf:tls;l are exercised by fuzzer
« 15 end if

. 16: end for

« 17: until timeout reached or abort-signal
* Qutput: Crashing Inputs T x

KLEE Workshop London 2018

Programming by experienced people

Schematic

» |f (conditionl)
-» return // short path, frequented by many many inputs
» clseif (condition2)

- exit // short paths, frequented by many inputs

» clse....

Prioritize low probability paths

v Use grey-box fuzzer which keeps track of path id for a test.

v Find probabilities that fuzzing a test t which exercises 11 leads to
an input which exercises 11’

O —

v' Higher weightage to low probability paths discovered, to
gravitate to those -> discover new states in Markov Chain with

minimal effort.

7

void crashme (char* s) {
if (s[0] == "b’)
if (s[1]=="a’)
if (s[2] =="d’)
if (s[3] =="1")
abort ();
}

1

2

3

4

)

6

/
\ /

National University
of Singapore

Power-Schedules NUS

» Constant: (i) = afi)
» AFL uses this schedule (fuzzing ~1 minute)
» o (i) .. how AFL judges fuzzing time for the test exercising path i

» Cut-off Exponential:

p(i) = 0, if f(i)>u)
min(ofi)/B*2s0, M) otherwise

B is a constant

s(i) #times the input exercising pathi has been chosen for
fuzzing

f(i) #fuzz exercising pathi (path-frequency)

U mean #fuzz exercising a discovered path (avg. path-
frequency)

M maximum energy expendable on a state

KLEE Workshop London 2018

National University
of Singapore

CEAINUS
Results %

» 10°- » 10°-

B R | 3 AFL-FAST

S 10t S 10*-

+ mean = 1288 ®

§ Tt T T T T T T T T T RS 10°gmp mean = 382

S q02- S 102-

o o

2 40'- £ 10+

£ £

S S

Z 10°-) Z 10°- CE—
1 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 150 200 250 300 350 400 450 500

Path Index Path Index

Independent evaluation found crashes 19x faster on
DARPA Cyber Grand Challenge (CGC) binaries

Integrated into main-line of AFL fuzzer within a year of publication (CCS16), which is
used on a daily basis by corporations for finding vulnerabilities

KLEE Workshop London 2018

Comments on the
technologies

The paper [1] on AFLFast is, IMO, a great example of where
academia shines: carefully looking at how and why something
works, developing some theory and a working model, and then
using that to get a substantial improvement on the state of the art
(and doing a nice evaluation to show that it really works).

National University
of Singapore

NUS
Use of Grey-box Fuzzing

» Greybox Fuzzing is frequently used, daily in corporations

» State-of-the-artin automated vulnerability detection

» Exiremely efficient coverage-based input generation
» All program analysis before/at instrumentation time.

» Start with a seed corpus, choose a seed file, fuzz it.

= Add to corpus only if new input increases coverage.

=» Cannot be directed, unlike symbolic execution!

KLEE Workshop London 2018

National University
of Singapore

| NUS
In this talk ...

Search Symbolic Execution

» Enhance the effectiveness of » Explore capabilities of symbolic
search technigues, with symbolic execution beyond directed
execution as inspiration search

= Enhance coverage, how to make
it directed?

KLEE Workshop London 2018

B ®

NUS
%

National University
of Singapore

Directed Fuzzing instead of Coverage

Adobe Reader 9.2

Adobe Reader 9.2 has encountered a problem and needs
to close. We are sornry for the inconvenience. —

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that you can send to us. We will treat
this report as confidential and anonymous.

To see what data this eror report contains, click here.

Send Error Report || Don't Send I

KLEE Workshop London 2018

Crash reproducing supports
- In-house debugging and fixing
- Vulnerability checking

National University
of Singapore

NUS
Using symbolic execution

Reproduced vulnerabilities in Acrobat Reader, Media Player with 24 hour time bound

Program binary

=)

Crash input files

. Directed Search Algorithm
Gruided Selective Svmbatw Execukion

(Crash instruction, loaded modules,

call stack, register values)

Benign input files
KLEE Workshop London 2018

Symbolic Analyzer

Binaries

push ebp
mov ebp,esp
mov edx,esi
push edi
mov esi,[ebp+arg_0]
mov edi, [ebp+arg_4]

Test Suite

=
A

Crash
Report

Static and
dynamic
analyses

+

IDAPro

®

KLEE Workshop London 2018

CFG and MDG

[> QRI;I |:> exploration
=l and

Selected
input files

Concolic

precise taint
tracking

CFG and MDG
(pruned)

Hybrid symbolic file

7
Y
Y v

Targeted
concolic
exploration

®

National University
of Singapore

TN US
%5

Crash explanation

L)

o

Crash-revealing input

Reproduced vulnerabilities in Acrobat Reader, Media Player with 24 hour time bound

National University
of Singapore

(Earlier) View-point

= Directed Fuzzing: classical consiraint satisfaction prob. g
= Program analysis to identify program paths
thatreach given program locations.

= Symbolic Execution to derive path conditions
x+y>10

for any of the identified paths.

= Constraint Solving to find an input that
-» satisfies the path condition and thus
- reaches a program location that was given.
return

p1 = (x>y) A (x+y>10)
P2 = = (x>y) A\ (x+y>10)

KLEE Workshop London 2018

National University
of Singapore

NUS
(Later) View-point

= Directed Fuzzing as optimization problem!

1. Instrumentation Time:
. Instrument program to aggregate distance values.
2. Runtime, for each input
. decide how long to be fuzzed based on distance.
« Ifinputis closer to the targets, it is fuzzed for longer.

« Ifinputis further away from the targets, it is fuzzed for shorter.

KLEE Workshop London 2018

National University
of Singapore

NUS
Power Schedules - Recap

* Input: Seed Inputs S

e 1:Tx=2

e 2:T=S

+ 3:ifT=92then

. 4 add empty fileto T

« 5. endif

+ 6. repeat

- 7 t = chooseNext(T)

e 9. forifrom TTo p do

« 10: t0 = mutate_input(t)

o 11: if 10 crashes then

> 12 add 10 fo Ty Exercises common

e 13: else if isinteresting (10) then path that rejects Short paths rejecting syntactically
. 14 add 0toT invalid PDF ;g\éafl:: c;zztf:tls;l are exercised by fuzzer
« 15 end if

. 16: end for

« 17: until timeout reached or abort-signal
* Qutput: Crashing Inputs T x

KLEE Workshop London 2018

TN US
95

National University
of Singapore

Instrumentation

= Function-leveltarget distance using call graph (CG)
= BB-level target distance using control-flow graph (CFG)

1. Identify target BBs and
assign distance 0

2. |dentify BBs that
call functions and
assign T0*FLTD

3. For each BB, compute harmonic
mean of (length of shorfest path to
any function-calling BB + T0*FLTD).

N/A

KLEE Workshop London 2018 CFG for fUﬂCﬁOh b

National University
of Singapore

NUS
Directed fuzzing as optimization

®» |nfegrafing Simulated Annealing as power schedule

= |n the beginning (t = 0min),
assign the same energy
to all seeds.

1.00-

» | ater (t=10min), assign
a bit more energy to
seeds that are closer.

Energy p(s,Tp)
(@)
3

= Af exploitation (t=80min), 0.00 -
assign maximal energy to !
seeds that are closest.

| 1 I
0.00 0.25 0.50 0.75 1.00

Distance d(s, Tp)

— t=0min ----t=10mi@

KLEE Workshop London 2018

National University
of Singapore

| NUS
In this talk ...

Search Symbolic Execution

» Enhance the effectiveness of » Explore capabilities of symbolic
search technigues, with symbolic execvution beyond directed
execution as inspiration search

= Enhance coverage

» Achieve directed search

AFLGO KLEE

KLEE Workshop London 2018

National University
of Singapore

NUS
Program Synthesis and Repair

Input-
output

Examples

Synthesizer Program
Quality ///////* Y

Criterion

Repaired

Program

Vulnerable
program

KLEE Workshop London 2018

National University
of Singapore

NUS
Search-based approach

» 7009: GenProg [Weimer-et-al-ICSE]

EVALUATE

FITNESS @L&‘m
e R o I N

—~ C £ DISCARD &
Vi X 71| [ACCEPT

KLEE Workshop London 2018 MUTATE

Over-fitting in Tests -> Program

Avoid

if (input1) return outputi
else if (input2) return outpui2
else if (input3) return output3

National University
of Singapore

NUS

Generalize beyond the provided tests
using symbolic reasoning.

ARTIFACTS
(symbolic
formulae)

Repaired

Vulnerable
program

KLEE Workshop London 2018

Program

function check (n)
{ // check if the number n is a prime
var factor; // if the checked number is not a prime, this i
var c;
factor = 0;
// try to divide the checked number by all numbers till its square root
for (=2 ; Math.sqrt(n)) ; c++)
{
// is n divisible by ¢ ?
break}

return (factor);
} // end of check function

function communicate ()
{ // communicate with the user
// 1 1is the L nurber
; // 1if the er i1s not a prime, thag€ is its first factor
e E // get the checked number

floor (1)
“be a wt

>sitive number")} ;

if (factor =
{alert (1
else
{alert (1

s a prime")} ;
s not a prime, " " + factor + "X" + i/factor) }

// end of communicate function

Syntactic approach

View-point on Repair

3. Validate the
candidate patches.

2. Generate the
candidate patches in
this line.

1. Where to fix —
in which line?

3. What are the
expressions which will
return these values?

2. What values should
be returned by these
lines? <inp=1, ret=0>

1. Where to fix —
in which line?

Semantic approach

Example

//1 int is upward(int inhibit, int up sep, int down sep) { ‘\\

int bias;
if (inhibit)
bias = down sep; //
else Dbias = up sep ;
if (bias > down sep)
return 1;
else return O;

@OO\]O\U‘Iswa

bias= up sep + 100

inhibit | up_sep down _se | Observed | Expected
output Output

1 100
1 11 110
0 100 50
1 -20 60
Lee wBkshop London 2010 10

PAss
0 1 fail
| | PAss
0 1 fail
o) o) PAss

%

ANUS

National University
of Singapore

TINUS
95

National University
of Singapore

Patch synthesis

Inhibit | up_sep down_sep
—— ——3 | == 110
///’ 1 1nt 1is int i1nhibit, int up sep, 1int ‘\\\
down sep

1f (1nhifAit)
bias = f(inhibit, up sep, down_ sep)
] = up sep ;

W 0O ~J o U1 & W N
D
D

y

\ Symbolic Execution

£(1,11,110)> 110 ‘/ X

National University
of Singapore

EINUS
95

Patch synthesis

» Accumulated constraints
™ f(1,11,110)> 110 A
= f(1,0,100) <100 A

» Find af satisfying this constraint

» By fixing the set of operators appearing in f

» Candidate methods
» Search over the space of expressions
® Program synthesis with fixed set of operators V

» Generafted fix
® f(inhibit,up sep,down _sep) = up_sep + 100

KLEE Workshop London 2018

National University
of Singapore

EAANUS
Semantic Repair ¥

Test input

Program

Concrete Execution

Concret Output:
e Value-set or Constraint
values
Symbolic
execution
Expected output of

KLEE Workshop London 2018

program

High-level view

Test input

Buggy Program

/ woncrefe Execution

var= XX+ b-c;

only unknown

Path conditions,
\ Output Expressions

Symbolic Execution with x as the

N

/

x = f(Live Vars)

Get properties of
function f via
symbolic
execution.

Constructa
function f which
satisfies these
properties!

KLEE Workshop London 2018

NUS

National University
of Singapore

National University
of Singapore

NUS
Program Repair given tests

» Generate —and-test patches (GenProg, CMU/Michigan)

= Specification inference and patch synthesis
» |nfer specification or properties about the patch to be synthesized.
= Meet the specification by enumeration, or by solving constraints.

» Various works — SemFix, Angelix (NUS), Nopol (KTH), SPR (MIT), ...

= QOrdering of search space of patches
= Use minimality to prioritize the search space. (NUS)
= Use learning approaches to prioritize the search space. (MIT)
= Patch templates can be learnt from human fixes. (HKUST)

KLEE Workshop London 2018

National University

http://angelix.io [ICSE13,16]

Insfrumented
Source

Buggy Suspicious
Source Locations
Angelic Instrumented

Forest Source

Pafch

KLEE Workshop London 2018

NUS

ngp

State-of-the technology

Defect Fixed
Expressions

Libtiff-4a24508-cc79c2b 2
- Libtiff-829d8c4-036d7bb 2
wireshark 2814K CoreUtils-00743a1f-ec48bead 3
php 1046K 62 CoreUtils-1dd8a331-d461bfd2 2
gzip 491K 4 CoreUtils-c5ccf29b-a04ddb8d 3
amp 145K 14
libtiff 77K 14
Scalability

Quality: Less functionality-deleting repair than any other tool.

KLEE Workshop London 2018

National University
of Singapore

NUS
Heartbleed

/1 if (hbtype == TLS1 HB REQUEST) { \ / \

2 e 1 if (hbtype ==TLS1 HB REQUEST
i memcpy (bp , pl, payload) ; 2 && payload + 18 <s->s3->rrec.length) {
R 3 s
S} 4)
(a) The buggy part of the Heartbleed- (b) A fix generated automatically
vulnerable OpenSSL / k /
/ if (1+ 2+ payload + 16 >s->s3->rrec.length) \

return O;

if (hotype ==TLS1_HB_REQUEST) {

}
else if (hbtype == TLS1_HB_RESPONSE) {

}

1
2
3
4
5
6
7
8
9
10 return O;

K (c) The developer-providedrepair /

KLEE Workshop London 2018

ﬂ int search(int x, int af], int length) { \

00NN AN WIN

k(o) Correctlinear search /

Verificafion condition «

[Experiments on embedded Linux BusyboxJ

KLEE Workshop London 2018

.

Use a reference mplementation

User-define condition: length =3 & a[0] < a[l] < a[2]

/in’r search(int x, int af], int length) { \

1

2

3

4 do({

5 int m= (L+R)/2;
6

7

8

(b) Buggy binary search

.

bug fix: x > a[m]

/

B ®

95

NUS

National University
of Singapore

National University
of Singapore

NUS
SemGraft (ICSE18)

Symbolic

analysis No

Negate

Verification

Buggy
program

Patch found

v

condifion

Yes

Reference
program

Candidate

oatch Counterexample

Buggy
Yes

program

YAV

Yes
Component

library

KLEE Workshop London 2018

Natio |u
ngp

aNUS
95

SemGrof’r results
GNU Coreutils _m

as reference c35545a Handle empty match Correct Correct

seq f7d1c59 Wrong output Correct Correct
sed /666fal Wrong output Incorrect Correct
sort dled3eé6 Wrong output Incorrect Correct
seq d86d20b Don't acceptsO Incorrect Correct
sed 3a9365e Handle s/// Incorrect Correct
1OV ISl Program | Commit _|Bug | Angelix _|SemGraff
asreference mkdir f7d1c59 Segmentation fault Incorrect Correct
mkfifo cdbl1682 Segmentation fault Incorrect Correct
mknod cdblé682 Segmentation fault Incorrect Correct
copy f3653f0 Failed to copy a file Correct Correct
mdbdsum 739cf4e Segmentation fault Correct Correct

cut 6f374d7 Wrong output Incorrect Correct

National University
of Singapore

NUS
Novel applications

Use program repair in intelligent
tutoring systems to give the
students’ individual attention.

Study in llT-Kanpur (FSE17)

KLEE Workshop London 2018

N US
95

National University
of Singapore

Acknowledgments

Co-authors: Grants:
Umair Ahmed & Amey Karkare (IIT-K) NRF NCR program TSUNAMi
Marcel Boehme (Monash), project (2015-2020)
Satish Chandra (Facebook),
Lars Grunske & Yannic Noller(Humboldt) DSO grant (2013-15).
Sergey Mechtaev (NUS)

T Nguyen and Daweli Qi Airbus grant (2017-18).
Manh-Dung Nguyen & Van-Thuan Pham (NUS)
Mukul Prasad & Hiroaki Yoshida (Fujitsu),

Shin Hwei Tan (SUSTech)
Jooyong Yi (Innopolis)

Relevant papers:
hitp://www.comp.nus.edu.sg/~abhik/projects/Repair/index.ntml
http://www.comp.nus.edu.sg/~abhik/projects/Fuzz/

KLEE Workshop London 2018

EINUS
National University
of Singapore

Vulnerabllity detection and patching

Search Symbolic Execution
» Enhance the effectiveness of » Explore capabilities of symbolic
search technigues, with symbolic executionbeyond directed
execution as inspiration search
= Enhance coverage = Specification inference

» Achieve directed search = Program synthesis/ repair

KLEE Workshop London 2018

For more details

Own website Project website

» hitp://www.comp.nus.edu.sg/~abhik = htip://www.comp.nus.edu.sq/~tsunami/

Links on Repair
hitp://www.comp.nus.edu.sg/~abhik/projects/Repair/index.html

Links on Fuzzing
hitp://www.comp.nus.edu.sg/~abhik/projects/Fuzz/

Let us talk in the reception now, or fomorrow - if you are interested.

KLEE Workshop London 2018

Reflections on Symbolic Execution

Reachability of a location. e.g. KATCH, AFLGo

Bug finding. e.g. KLEE, AFLFast

Specification Inference from buggy program e.g. SemFix, Angelix

KLEE Workshop London 2018

