
Introduction Approach Implementation Evaluation Application

Towards Efficient Data-flow Test Data Generation Using KLEE

Chengyu Zhang1, Ting Su2, Yichen Yan1, Ke Wu3, Geguang Pu1

1East China Normal University, China
2Nanyang Technological University, Singapore

3National Trusted Embedded Software Engineering Technology Research Center, China

2018.4.19

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 1 / 29



Introduction Approach Implementation Evaluation Application

Outline

Introduction

Approach

Implementation

Evaluation

Application

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 2 / 29



Introduction Approach Implementation Evaluation Application

Data-flow Testing

Data-flow testing identifies potential bugs by checking the correctness of variable
definitions by observing their corresponding uses.
Several empirical studies have demonstrated that data-flow testing is more effective in
fault detection than control-flow testing.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 3 / 29



Introduction Approach Implementation Evaluation Application

An example

1 double power(int x,int y){

2 int exp; double res;

3 if (y>0) exp = y;

4 else exp = -y;

5 res =1;

6 while (exp !=0){

7 res *= x;

8 exp -= 1;

9 }

10 if (y<=0)

11 if(x==0)

12 abort;
13 else

14 return 1.0/ res;

15 return res;

16 }

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 4 / 29



Introduction Approach Implementation Evaluation Application

An example

1 double power(int x,int y){

2 int exp; double res;

3 if (y>0) exp = y;

4 else exp = -y;

5 res=1; //definition

6 while (exp !=0){

7 res *= x;

8 exp -= 1;

9 }

10 if (y<=0)

11 if(x==0)

12 abort;
13 else

14 return 1.0/res; //use

15 return res;

16 }

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 5 / 29



Introduction Approach Implementation Evaluation Application

An example

1 double power(int x,int y){

2 int exp; double res;

3 if (y>0) exp = y;

4 else exp = -y;

5 res=1; //definition

6 while (exp !=0){

7 res *= x; //redefinition

8 exp -= 1;

9 }

10 if (y<=0)

11 if(x==0)

12 abort;
13 else

14 return 1.0/res; //use

15 return res;

16 }

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 6 / 29



Introduction Approach Implementation Evaluation Application

Approach

Three heuristic search strategies:

Cut point guided search

Backtrack strategy

Redefinition Path Pruning

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 7 / 29



Introduction Approach Implementation Evaluation Application

Cut point guided search

Definition (Cut Point)

For du(ld, lu, v)
cut points are a sequence of critical control
points c1, . . . , ci, . . . , cn that must be
passed through in succession by any control
flow paths that cover this pair.
c1 �I . . . ci �I ld �I . . . cn �I lu. Cut points: {l1, l3, ld, l6, lu}

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 8 / 29



Introduction Approach Implementation Evaluation Application

Cut point guided search

1 double power(int x,int y){

2 int exp; double res;

3 if (y>0) exp = y;

4 else exp = -y;

5 res =1;

6 while (exp !=0){

7 res *= x;

8 exp -= 1;

9 }

10 if (y<=0)

11 if(x==0)

12 abort;
13 else

14 return 1.0/ res;

15 return res;

16 }

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 9 / 29



Introduction Approach Implementation Evaluation Application

Backtrack strategy

Definition (Backtrack formula)

state weight(es) =
1

d2
+

1

i2
(1)

d: instruction distance toward the next
uncovered cut point

i: number of instructions since the last
new instruction have been covered

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 10 / 29



Introduction Approach Implementation Evaluation Application

Redefinition Path Pruning

1 double power(int x,int y){

2 int exp; double res;

3 if (y>0) exp = y;

4 else exp = -y;

5 res=1; //definition

6 while (exp !=0){

7 res *= x; //redefinition

8 exp -= 1;

9 }

10 if (y<=0)

11 if(x==0)

12 abort;
13 else

14 return 1.0/res; //use

15 return res;

16 }

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 11 / 29



Introduction Approach Implementation Evaluation Application

Approach Overview

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 12 / 29



Introduction Approach Implementation Evaluation Application

Why We Choose KLEE?

CAUT: https://www.lab301.cn/caut/

Automated coverage-driven test data generation using dynamic
symbolic execution
T. Su, G. Pu, B. Fang, J. He, J. Yan, S. Jiang, and J. Zhao (2014).
SERE 2014

Combining symbolic execution and model checking for data flow
testing.
T. Su, Z. Fu, G. Pu, J. He, and Z. Su. (2015).
ICSE 2015

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 13 / 29



Introduction Approach Implementation Evaluation Application

Why We Choose KLEE?

Open-source

Robust

Scalable

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 14 / 29



Introduction Approach Implementation Evaluation Application

Data-flow Testing Framework

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 15 / 29



Introduction Approach Implementation Evaluation Application

Experiment Setup

Subjects #Sub #LOC #DU pair

Previous Literature 7 449 346
SIR 7 2,687 1,409

SV-COMP (ntdriver) 6 7,266 2,691
SV-COMP (ssh) 10 5,249 18,347

We evaluated the approach on 30 subjects.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 16 / 29



Introduction Approach Implementation Evaluation Application

Performance Statistics of Different Search Strategies

Name Description

DFS Depth First Search
RSS Random State Search

RSS-COS:md2u RSS interleaved with Min-Dist-to-Uncovered heuristic
SDGS Shortest Distance Guided Search
CPGS Cut Point Guided Search

Subject DFS RSS RSS-MD2U SDGS CPGS
N M (SIQR) N M (SIQR) N M (SIQR) N M (SIQR) N M (SIQR)

Total 6218 9.13 7883 13.54 8091 21.89 8035 13.51 8300 12.96

CPGS achieves the best performance in the symbolic execution approach.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 17 / 29



Introduction Approach Implementation Evaluation Application

Model Checking based Approach

Towards Efficient Data-flow Test Data Generation
T. Su, C. Zhang, Y. Yan, L. Fan, G. Pu, Y. Liu, Z. Fu, Z. Su
https://arxiv.org/abs/1803.10431

Subject BLAST CPAchecker CBMC
F I U MF MI F I U MF MI F I U MF MI

Total 6720 10199 5874 1.82 5.25 8156 12748 1889 8.64 5.27 8984 13731 78 91.35 110.60

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 18 / 29



Introduction Approach Implementation Evaluation Application

Model Checking VS. Symbolic Execution on Data-flow Testing

Subjects #Sub #LOC #DU pair Average Coverage
Median Time

(s/pair)

KLEE CPA KLEE CPA
Previous Literature 7 449 346 60% 72% 0.1 4.3

SIR 7 2,687 1,409 57% 60% 0.7 10.1
SV-COMP (ntdriver) 6 7,266 2,691 75% 51% 1.5 5

SV-COMP (ssh) 10 5,249 18,347 29% 31% 18 5.7

KLEE can easily achieve nearly 60% of data-flow coverage within less than 1 second
for each pair in the subjects from previous literature and SIR.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 19 / 29



Introduction Approach Implementation Evaluation Application

Future Work

We planned to implement the data-flow testing
approach in our cloud-based unit test framework.

Web UI

Server

Operation

Master &
File System

MongoDB
Redis

Upload archive

Worker

Fork Test case

Communication

Return test case

SmartUnitCore

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 20 / 29



Introduction Approach Implementation Evaluation Application

SmartUnit (ICSE-SEIP’18)

Automatically generate testing report.

Automatically generate test case.

Automatically insert function stub.

Cloud-based platform for corporations.

It’s adapted for LDRA Testbed R©1, Tessy R©2 and other popular automated testing tools
for embedded systems. It supports three common control-flow coverage criteria:
statement coverage, branch coverage and MC/DC (Modified Condition Decision
Coverage).

1http://ldra.com/industrial-energy/products/ldra-testbed-tbvision/
2https://www.razorcat.com/en/product-tessy.html

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 21 / 29



Introduction Approach Implementation Evaluation Application

SmartUnit (ICSE-SEIP’18)

Statement Coverage (#Functions) Branch Coverage (#Functions) MC/DC Coverage (#Functions)
0%-50% 50%-99% 100% 0%-50% 50%-99% 100% 0%-50% 50%-99% 100%

9.3% 17.5% 73.2% 14.3% 12.5% 73.2% 47.8% 13.6% 38.6%

SmartUnit achieves the 100% statement and branch coverage on most of the functions.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 22 / 29



Introduction Approach Implementation Evaluation Application

SmartUnit (ICSE-SEIP’18)

We have the cooperation with:

China Academy of Space Technology

CASCO Signal Ltd.

The 32nd Institute of China Electronics Technology Group Corporation

...

SmartUnit: Empirical Evaluations for Automated Unit Testing of
Embedded Software in Industry
C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu(2018).
ICSE-SEIP, May 27-June 3, 2018

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 23 / 29



Introduction Approach Implementation Evaluation Application

Conclusion

https://github.com/muchang/klee https://tingsu.github.io/files/hybrid dft.html

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 24 / 29



Introduction Approach Implementation Evaluation Application

Towards Efficient Data-flow Test Data Generation Using KLEE

Chengyu Zhang1, Ting Su2, Yichen Yan1, Ke Wu3, Geguang Pu1

1East China Normal University, China
2Nanyang Technological University, Singapore

3National Trusted Embedded Software Engineering Technology Research Center, China

2018.4.19

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 25 / 29



Introduction Approach Implementation Evaluation Application

Definition (Program Paths)

Two kinds of program paths, i.e., control flow paths and execution paths are
distinguished during data-flow testing. Control flow paths are the paths from the
control flow graph of the program under test, which abstract the flow of control.
Execution paths are driven by concrete program inputs, which represent dynamic
program executions. Both of them can be represented as a sequence of control points
(denoted by line numbers), e.g., l1, . . . , li, . . . , ln.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 26 / 29



Introduction Approach Implementation Evaluation Application

Definition (Def-use Pair)

The test objective of data-flow testing is referred as a def-use pair, denoted by
du(ld, lu, v). Such a pair appears when there exists a control flow path that starts from
the variable definition statement ld (or the def statement in short), and then reaches
the variable use statement lu (or the use statement in short), but no statements on the
subpaths from ld to lu redefine the variable v.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 27 / 29



Introduction Approach Implementation Evaluation Application

Definition (Data-flow Testing)

Data-flow testing requires to generate at least one test case t for each def-use pair
(ld, lu, v) in the program P under test. The test input t should drive an execution path
p that covers the variable definition statement at ld, and then covers variable use
statement at lu, but without covering any redefinition statements w.r.t v, i.e., the
subpath from ld to lu is a def-clear path. Such a test adequacy requirement is called
all def-use coveragea in data-flow testing.

aIn this paper, we follow the all def-use coverage defined by Rapps and Weyuker, since almost all
of the literature that followed uses or extends this definition.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 28 / 29



Introduction Approach Implementation Evaluation Application

Definition (Cut Point)

Given a def-use pair du(ld, lu, v), its cut points are a sequence of critical control points
c1, . . . , ci, . . . , cn that must be passed through in succession by any control flow paths
that cover this pair. The latter control point is the immediate dominator of the former
one, i.e., c1 �I . . . ci �I ld �I . . . cn �I lu. Each control point in this sequence is
called a cut point.

Chengyu Zhang 2018.4.19 Towards Efficient Data-flow Test Data Generation Using KLEE 29 / 29


	Introduction
	Approach
	Implementation
	Evaluation
	Application

