
Software Reliability Group
Imperial College London ∙ Frank Busse



Chopped Symbolic Execution

● Problem: heavily-branching uninteresting code might hinder deep exploration
● Solution: mark code, create state snapshot, skip code, recover snapshot and 

execute relevant branches of skipped code if side-effects influence current state
● David will present his work later

Trabish, Mattavelli, Rinetzky, Cadar: Chopped Symbolic Execution, ICSE 2018



Floating-Point Arithmetic

● Problem: missing floating point support in KLEE
● Solution: implement it—twice

Liew, Schemmel, Cadar, Donaldson, Zähl, Wehrle:
Floating-Point Symbolic Execution: A Case Study in N-version Programming, ASE 2017



JIT Fuzzing Solver

● Problem: traditional constraint-solving is often slow and boring
● Solution: take a set of constraints, translate them into a program, if input 

traverses only true branches it represents satisfying assignment, use fuzzer to 
find these inputs

Liew, Donaldson, Cadar (on-going work)



Quality of Symbolic Executors

● Problem: many people use symbolic executors to test software, only few people 
test symbolic executors

● Solution: combine program generation with differential testing for symbolic 
executors

Kapus, Cadar: Automatic Testing of Symbolic Execution Engines via Program Generation and Differential Testing, ASE 2017



Array Constraint Optimisations

● Problem: high solving time for constraints involving large arrays
● Solution: use semantics-preserving constraint transformations to improve 

solving time 

Perry, Mattavelli, Zhang, Cadar: Accelerating Array Constraints in Symbolic Execution, ISSTA 2017



Program Transformations

● Problem: path explosion and high solving time
● Solution: use program transformations to improve solving time and to aid 

exploration

Cadar: Targeted Program Transformations for Symbolic Execution, ESEC/FSE 2015



Binary-level Symbolic Execution

● Problem: KLEE executes LLVM bitcode
● Solution: add support for native binaries

Busse, Cadar (on-going work)


