
Lesly-Ann Daniel
CEA, LIST, Université Paris-Saclay

France

Sébastien Bardin
CEA, LIST, Université Paris-Saclay

France

Tamara Rezk
Inria

France

Efficient Relational Symbolic Execution for
Constant-Time at Binary-Level with Binsec/Rel

2nd International KLEE Workshop on Symbolic Execution,

10-11 June, 2021

Published at IEEE Symposium on Security and Privacy 2020

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

Context: Timing Attacks

Timing attacks: execution time of programs can
leak secret information

First timing attack in 1996 by Paul Kocher: full
recovery of RSA encryption key

3 s

9 s

9 s

Protect Software with Constant-Time Programming

4

?
?

?

Constant-Time. Execution time is independent from secret input

Protect Software with Constant-Time Programming

5

?
?

?

Constant-Time. Execution time is independent from secret input

→ Control-flow
→ Memory accesses

Protect Software with Constant-Time Programming

6

?
?

?

Constant-Time. Execution time is independent from secret input

→ Control-flow
→ Memory accesses

Property relating 2 execution traces (2-hypersafety)

Problem: Need Automated Verif.

7

Execution time is not easy to determine
• Sequence of instructions executed

• Memory accesses (Cache attacks, 2005)
Human

Multiple failure points

Problem: Need Automated Verif.

8

Execution time is not easy to determine
• Sequence of instructions executed

• Memory accesses (Cache attacks, 2005)
Human

Multiple failure points

Compiler can introduce bugs [1]!

Human

Compiler

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Problem: Need Automated Verif.

9

Execution time is not easy to determine
• Sequence of instructions executed

• Memory accesses (Cache attacks, 2005)
Human

Multiple failure points

Compiler can introduce bugs [1]!

Human

Compiler

Not easy to write constant-time programs
We need efficient automated verification tools!

[1] “What you get is what you C”, Simon, Chisnall, and Anderson 2018

Challenges for CT analysis

10

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard tools do not apply

Challenges for CT analysis

11

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard tools do not apply

Binary-level SERelSE
SE for pairs of traces with sharing

Challenges for CT analysis

12

→ Efficiently model pairs of executions → Binary-analysis

Compilation

Property of 2 executions Not necessarily preserved by
compilers

Reason explicitly about memoryStandard tools do not apply

Binary-level SE

Does not scale (whole memory is duplicated, no sharing)

RelSE
SE for pairs of traces with sharing

Contributions

13

BINSEC/REL

First efficient tool
for CT analysis
at binary-level

New Tool

Dedicated optimizations for
RelSE at binary-level:

maximize sharing in memory
(x700 speedup)

Optimizations

From OpenSSL, BearSSL,
libsodium

296 verified binaries
3 new bugs introduced by

compilers from verified source
Out of reach of LLVM verification tools

Application: crypto verif.

Efficient Relational Symbolic Execution for Constant-Time at Binary-Level

https://github.com/binsec/rel

https://github.com/binsec/rel

14

 Relational Symbolic Execution (RelSE)

 Our Approach: Binary-level RelSE

Relational Symbolic Execution [1,2]

15

p

s

Public:

Secret:

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

16

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 | 𝑎′ >

p

s

SE Engine
Public:

Secret:

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

17

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 | 𝑎′ >

p

s

SE Engine

Formula:

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

18

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 | 𝑎′ >

p

s

SE Engine

Formula:

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Question: Can a depend on secret s ?

Formula with sharing: Solver UNSAT

SAT𝐹 𝑝, 𝑠, 𝑠′ ∧ 𝑎 ≠ 𝑎′

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

Relational Symbolic Execution [1,2]

19

p ↦< 𝑝 >
s ↦< 𝑠 | 𝑠′ >

mem ↦< 𝜇 | 𝜇′ >
a ↦< 𝑎 >

p

s

SE Engine

Formula:

Public:

Secret:

𝐹(𝑝, 𝑠, 𝑠′)

Question: Can a depend on secret s ?

Sharing in SE 👍
Secret tracking 👍

[1] “Shadow of a doubt”, Palikareva, Kuchta, and Cadar 2016
[2] “Relational Symbolic Execution”, Farina, Chong, and Gaboardi 2017

By definition, a does not depend on secrets

We spare a call to the solver !

Problem with RelSE at binary-level

20

Problem: Sharing fails at binary-level
• Memory is represented as a symbolic array < 𝜇 | 𝜇′ >
• Duplicated at the beginning of SE
• Duplicate all load operations

In our experiments, we show that standard RelSE
does not scale on binary code

Our approach: Binary-level RelSE

21

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

[1] “Arrays Made Simpler”, Farinier et al. 2018

Our approach: Binary-level RelSE

22

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018

Our approach: Binary-level RelSE

23

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Example.
load esp-4 returns < 𝑝 > instead of
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018

Our approach: Binary-level RelSE

24

FlyRow: on-the-fly read-over-write

• Builds on read-over-write [1]
• Relational expr. in memory
• Simplify loads on-the-fly

→ Avoids resorting to duplicated memory

Example.
load esp-4 returns < 𝑝 > instead of
< 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇 (𝑒𝑠𝑝 − 4) | 𝑠𝑒𝑙𝑒𝑐𝑡 𝜇′ 𝑒𝑠𝑝 − 4 >

+ simplifications for efficient syntactic disequality checks

Memory as the history of stores.

𝑒𝑠𝑝 − 4 < 𝑝 >

𝑒𝑠𝑝 − 8 < 𝑠 | 𝑠′ >

𝑖𝑛𝑖𝑡_𝑚𝑒𝑚

[1] “Arrays Made Simpler”, Farinier et al. 2018

Experimental evaluation

25

Experimental evaluation

26

https://github.com/binsec/rel • Utility functions from
OpenSSL & HACL*

• Cryptographic primitives:

• libsodium

• BearSSL

• OpenSSL

• HACL*

RQ1. Effective on real crypto?

→ 338 programs: 54M unrolled instr in 2h

RQ2. Comparison vs. RelSE

→ 700× faster

Benchmark

Experiments

+ More in paper

https://github.com/binsec/rel

RQ1: Effectiveness

27

Programs Static Instr. Unrolled Instr. Time Success

Secure (Bounded-Verif) 296 64k 23M 46min 100%

Insecure (Bug-Finding) 42 6k 22k 40min 100%

• First automatic CT analysis of these programs at binary-level
• Can find vulnerabilities in binaries compiled from CT source
• Found 3 bugs that slipped through prior LLVM analysis

RQ2: Comparison with RelSE

28

Binsec/Haunted 700× faster than RelSE
No timeouts even on large programs (e.g. donna)

Instructions Instructions / sec Time Timeouts

RelSE 349k 6.2 15h47 13

Binsec/Rel 23M 4429 1h26 0

Conclusion

29

Conclusion

30

https://github.com/binsec/haunted

https://github.com/binsec/rel

• Dedicated optimizations for RelSE at binary-level
→ Sharing for scaling

• Binsec/Rel, binary-level tool for constant-time
analysis

• Verification of crypto libraries at binary-level +
new bugs introduced by compilers out-of reach
of LLVM verification

New framework to verify
secret-erasure (WIP)

Detection of Spectre attacks

After Binsec/Rel

I’m also looking for a postdoc for next year !

https://github.com/binsec/haunted
https://github.com/binsec/rel

 Standard Approach: Self-Composition

31

 Better Approach: RelSE

 Our Approach: Binary-level RelSE

Standard Approach: Self-Composition [1,2]

32

p ↦ 𝑝
s ↦ 𝑠

mem ↦ 𝜇
a ↦ 𝑎

p

s

SE Engine

Formula:

Public:

Secret:

𝐹(𝑝, 𝑠)

Question: Can a depend on secret s ?

𝐹 𝑝, 𝑠 ∧ 𝐹 𝑝′, 𝑠′ ∧ 𝑝 = 𝑝′ ∧ 𝑎 ≠ 𝑎′

Self-composed formula: Solver UNSAT

SAT

[1] “Verifying information flow properties of firmware using symbolic execution”, Subramanyan et al. 2016
[2] “CaSym: Cache aware symbolic execution for side channel detection and mitigation”, Brotzman et al. 2019

Standard Approach: Self-Composition

33

Limitations of self-composition:
High number of insecurity queries: conditional + memory access

Why?
• No sharing between two executions
• Does not keep track of secret-dependencies

SE for constant-time via self-composition does not scale
+ we show it in our experiments

