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KLEEMA = KLEE + Mutation Analyser




Use

@ Mutation Testing measures the quality of test inputs

@ Mutation Testing is flexible with the injection of artificial
faults

@ KLEEMA can be plugged with any Dynamic Symbolic
Executor (DSE), developed on top of KLEE

o KLEEMA helps in comparing test suites generated by two or
more DSEs




Fault Types

Current version of KLEEMA supports following types of faults.

o Logical Operator Faults (LOF)

@ Arithmetic Operator Faults (AOF)
o Relational Operator Faults (ROF)
o Literal Negation Faults (LNF)

o Predicate Negation Faults (PNF)
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@ To achieve a maximal Mutation Score for a program, one
needs to use KLEE and generate test cases.

o But, utilisation of generated test cases (.ktest format) by
KLEE is not straight forward.

@ There is a replay process of test cases described in KLEE
website?.

“https://klee.github.io/tutorials/testing-function/




@ KLEE has a replay library, which simply replaces the call to
klee_make_symbolic with a call to a function that assigns to
input the value stored in the .ktest file.

@ To use replay tool, one needs to link the program with the
libkleeRuntest library and set the KTEST_FILE environment
variable to point to the name of the desired test case as
shown in Listing 1.




Details |

Listing 1: Systematically replay a .ktest with a C-Program and store the
output.

$ export LD_LIBRARY_PATH=path-to-klee-build-dir/lib/
:$LD_LIBRARY_PATH

$ gcc -I ../../include -L path-to-klee-build-dir/1ib/
C-Program.c -lkleeRuntest

$ KTEST_FILE=testl.ktest ./a.out > CO1l.txt

$ KTEST_FILE=test2.ktest ./a.out > C02.txt

$ KTEST_FILE=test3.ktest ./a.out > CO03.txt

$ KTEST_FILE=testn.ktest ./a.out > COn.txt




Table 1: Results on sample programs

Programs ‘ LOCs ‘ #TM ‘ #DM ‘ #RM ‘ #AM ‘ #KM ‘ MS ‘

sample.c 98 90 39 51 9 42 | 82%
P2-L-T-R16.c 98 225 102 123 62 61 49%
tcas.c 293 218 0 218 122 96 | 44%
test23-B5.c 4677 | 31455 | 25015 | 6440 | 2480 | 3960 | 61%

Where, TM=Total Mutants, DM=Dead Mutants, RM=Reachable
Mutants, AM=Alive Mutants, KM=Killed Mutants, MS=Mutation Score

Let’s run a sample program for Demo I

https://github.com/sanghul790/KLEEMA/tree/master
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https://github.com/sanghu1790/KLEEMA/tree/master
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