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Idea

KLEEMA = KLEE + Mutation Analyser
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Use

Mutation Testing measures the quality of test inputs

Mutation Testing is flexible with the injection of artificial
faults

KLEEMA can be plugged with any Dynamic Symbolic
Executor (DSE), developed on top of KLEE

KLEEMA helps in comparing test suites generated by two or
more DSEs
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Fault Types

Current version of KLEEMA supports following types of faults.

Logical Operator Faults (LOF)

Arithmetic Operator Faults (AOF)

Relational Operator Faults (ROF)

Literal Negation Faults (LNF)

Predicate Negation Faults (PNF)
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Framework
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Details

To achieve a maximal Mutation Score for a program, one
needs to use KLEE and generate test cases.

But, utilisation of generated test cases (.ktest format) by
KLEE is not straight forward.

There is a replay process of test cases described in KLEE
websitea.

ahttps://klee.github.io/tutorials/testing-function/
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Details

KLEE has a replay library, which simply replaces the call to
klee make symbolic with a call to a function that assigns to
input the value stored in the .ktest file.

To use replay tool, one needs to link the program with the
libkleeRuntest library and set the KTEST FILE environment
variable to point to the name of the desired test case as
shown in Listing 1.
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Details I

Listing 1: Systematically replay a .ktest with a C-Program and store the
output.

$ export LD_LIBRARY_PATH=path-to-klee-build-dir/lib/

:$LD_LIBRARY_PATH
$ gcc -I ../../include -L path-to-klee-build-dir/lib/

C-Program.c -lkleeRuntest

$ KTEST_FILE=test1.ktest ./a.out > CO1.txt

$ KTEST_FILE=test2.ktest ./a.out > CO2.txt

$ KTEST_FILE=test3.ktest ./a.out > CO3.txt

.....

$ KTEST_FILE=testn.ktest ./a.out > COn.txt
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Results

Table 1: Results on sample programs

Programs LOCs #TM #DM #RM #AM #KM MS

sample.c 98 90 39 51 9 42 82%
P2-L-T-R16.c 98 225 102 123 62 61 49%

tcas.c 293 218 0 218 122 96 44%
test23-B5.c 4677 31455 25015 6440 2480 3960 61%

Where, TM=Total Mutants, DM=Dead Mutants, RM=Reachable
Mutants, AM=Alive Mutants, KM=Killed Mutants, MS=Mutation Score

Demo

Let’s run a sample program for Demo

Code

https://github.com/sanghu1790/KLEEMA/tree/master
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