The KLEEMA Prototype

Sangharatna Godboley!, G. Monika Rani?, and Arpita Dutta3

KLEE Workshop 2021

Organized by the Software Reliability Group at Imperial College London,
10-11 June, 2021, Online event*

May 28, 2021

Plan of the talk

Idea

Use

Fault Types
Framework
Details
Results

References

© ©0 0000

KLEEMA = KLEE + Mutation Analyser

Use

@ Mutation Testing measures the quality of test inputs

@ Mutation Testing is flexible with the injection of artificial
faults

@ KLEEMA can be plugged with any Dynamic Symbolic
Executor (DSE), developed on top of KLEE

o KLEEMA helps in comparing test suites generated by two or
more DSEs

Fault Types

Current version of KLEEMA supports following types of faults.

o Logical Operator Faults (LOF)

@ Arithmetic Operator Faults (AOF)
o Relational Operator Faults (ROF)
o Literal Negation Faults (LNF)

o Predicate Negation Faults (PNF)

Framework

KLEEMA

libkleeRuntest

[cot™y [co2y [coshy [conty

[M10% [M102) [M103 [M10M

[M20H [M202) [M203 [M201
/] [M30™ [M302) [M303 [M30MHY

[MmO® [MmO2) [MmO3) [MmORy

v

Compare
0,
MScore% KILLED/ALIVE (CO*=M"0%)

C-Program

KTEST_FILE

KLEE

@ To achieve a maximal Mutation Score for a program, one
needs to use KLEE and generate test cases.

o But, utilisation of generated test cases (.ktest format) by
KLEE is not straight forward.

@ There is a replay process of test cases described in KLEE
website?.

“https://klee.github.io/tutorials/testing-function/

@ KLEE has a replay library, which simply replaces the call to
klee_make_symbolic with a call to a function that assigns to
input the value stored in the .ktest file.

@ To use replay tool, one needs to link the program with the
libkleeRuntest library and set the KTEST_FILE environment
variable to point to the name of the desired test case as
shown in Listing 1.

Details |

Listing 1: Systematically replay a .ktest with a C-Program and store the
output.

$ export LD_LIBRARY_PATH=path-to-klee-build-dir/lib/
:$LD_LIBRARY_PATH

$ gcc -I ../../include -L path-to-klee-build-dir/1ib/
C-Program.c -lkleeRuntest

$ KTEST_FILE=testl.ktest ./a.out > CO1l.txt

$ KTEST_FILE=test2.ktest ./a.out > C02.txt

$ KTEST_FILE=test3.ktest ./a.out > CO03.txt

$ KTEST_FILE=testn.ktest ./a.out > COn.txt

Table 1: Results on sample programs

Programs ‘ LOCs ‘ #TM ‘ #DM ‘ #RM ‘ #AM ‘ #KM ‘ MS ‘

sample.c 98 90 39 51 9 42 | 82%
P2-L-T-R16.c 98 225 102 123 62 61 49%
tcas.c 293 218 0 218 122 96 | 44%
test23-B5.c 4677 | 31455 | 25015 | 6440 | 2480 | 3960 | 61%

Where, TM=Total Mutants, DM=Dead Mutants, RM=Reachable
Mutants, AM=Alive Mutants, KM=Killed Mutants, MS=Mutation Score

Let’s run a sample program for Demo I

https://github.com/sanghul790/KLEEMA/tree/master

Ny — —

https://github.com/sanghu1790/KLEEMA/tree/master

o Cristian Cadar, Daniel Dunbar, and Dawson R Engler. KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In OSDI, pages 209-224, 2008.

e A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the orthogonal. In Mutation testing for

the new century, pages 34-44. Springer, 2001.

\

.

N\

	Idea
	Use
	Fault Types
	Framework
	Details
	Results
	References

