
The KLEEMA Prototype

Sangharatna Godboley1, G. Monika Rani2, and Arpita Dutta3

NIT Warangal, India1,2 and IIT Kharagpur, India3

KLEE Workshop 2021

Organized by the Software Reliability Group at Imperial College London,
10-11 June, 2021, Online event∗

May 28, 2021

Plan of the talk

1 Idea

2 Use

3 Fault Types

4 Framework

5 Details

6 Results

7 References

2/12 The KLEEMA Prototype

Idea

KLEEMA = KLEE + Mutation Analyser

3/12 The KLEEMA Prototype

Use

Mutation Testing measures the quality of test inputs

Mutation Testing is flexible with the injection of artificial
faults

KLEEMA can be plugged with any Dynamic Symbolic
Executor (DSE), developed on top of KLEE

KLEEMA helps in comparing test suites generated by two or
more DSEs

4/12 The KLEEMA Prototype

Fault Types

Current version of KLEEMA supports following types of faults.

Logical Operator Faults (LOF)

Arithmetic Operator Faults (AOF)

Relational Operator Faults (ROF)

Literal Negation Faults (LNF)

Predicate Negation Faults (PNF)

5/12 The KLEEMA Prototype

Framework

6/12 The KLEEMA Prototype

Details

To achieve a maximal Mutation Score for a program, one
needs to use KLEE and generate test cases.

But, utilisation of generated test cases (.ktest format) by
KLEE is not straight forward.

There is a replay process of test cases described in KLEE
websitea.

ahttps://klee.github.io/tutorials/testing-function/

7/12 The KLEEMA Prototype

Details

KLEE has a replay library, which simply replaces the call to
klee make symbolic with a call to a function that assigns to
input the value stored in the .ktest file.

To use replay tool, one needs to link the program with the
libkleeRuntest library and set the KTEST FILE environment
variable to point to the name of the desired test case as
shown in Listing 1.

8/12 The KLEEMA Prototype

Details I

Listing 1: Systematically replay a .ktest with a C-Program and store the
output.

$ export LD_LIBRARY_PATH=path-to-klee-build-dir/lib/

:$LD_LIBRARY_PATH
$ gcc -I ../../include -L path-to-klee-build-dir/lib/

C-Program.c -lkleeRuntest

$ KTEST_FILE=test1.ktest ./a.out > CO1.txt

$ KTEST_FILE=test2.ktest ./a.out > CO2.txt

$ KTEST_FILE=test3.ktest ./a.out > CO3.txt

.....

$ KTEST_FILE=testn.ktest ./a.out > COn.txt

9/12 The KLEEMA Prototype

Results

Table 1: Results on sample programs

Programs LOCs #TM #DM #RM #AM #KM MS

sample.c 98 90 39 51 9 42 82%
P2-L-T-R16.c 98 225 102 123 62 61 49%

tcas.c 293 218 0 218 122 96 44%
test23-B5.c 4677 31455 25015 6440 2480 3960 61%

Where, TM=Total Mutants, DM=Dead Mutants, RM=Reachable
Mutants, AM=Alive Mutants, KM=Killed Mutants, MS=Mutation Score

Demo

Let’s run a sample program for Demo

Code

https://github.com/sanghu1790/KLEEMA/tree/master

10/12 The KLEEMA Prototype

https://github.com/sanghu1790/KLEEMA/tree/master

References ≫ I

1 Cristian Cadar, Daniel Dunbar, and Dawson R Engler. KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In OSDI, pages 209-224, 2008.

2 A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the orthogonal. In Mutation testing for

the new century, pages 34-44. Springer, 2001.

11/12 The KLEEMA Prototype

Th
ank

Yo
u!

12/12 The KLEEMA Prototype

	Idea
	Use
	Fault Types
	Framework
	Details
	Results
	References

