
Characterizing and Improving Bug-Finders
with Automated Bug Injection

Yu Hu, Zekun Shen,
Brendan Dolan-Gavitt

06/10/2021

Large-scale Automated Vulnerability Addition (LAVA)
• LAVA is an automatic tool that can inject multiple bugs to programs through

source-level instrumentation powered by LLVM
• Ground-truth vulnerability corpora database

Features
• Known information about these bugs

- Number of bugs
- Types and locations

• Bugs come with triggering inputs
• Inject bugs in real world program!

2

LAVA

This lets us investigate interesting questions about KLEE
empirically:

• When might KLEE miss a bug?
• What's the effect of symbolic file size?
• What search strategies work best for bug-finding?
• Relationship between coverage and bugs found?
• Does the depth of injected bugs affect KLEE's bug finding

performance?

3

Background

4

Methodology

Two-stage Analysis

Small Program Analysis
- A toy program
- KLEE is able to cover all

paths
- Any missed bug =>

soundness problem

Real Program Analysis
- Coreutils programs with

Lava injected bugs
- Much more complex

situation

RQ: When might KLEE miss a bug?

Small program analysis with LAVA injected bugs

• Toy.c with only 70 lines, input is a binary file, output is meta information
• 159 buggy program produced
• Injected into the parameter of call to user-defined function and external

functions
• 5 hours running KLEE, with sufficient resources
• Never expire, never kill the states, KLEE exits normally
• Probe the soundness problem

5

Methodology

Evaluation - Small Program

• 97% instruction coverage and 100% branch coverage
• 3% missed instructions are all Exit(1) for fail to read the file

6

Small Program Evaluation

SMALL
Function Category KLEE v1.4 KLEE v1.4 with

printf enabled
KLEE v2.2 Total bugs

user-defined function 68 68 68 72

printf function 0 31 82 87

Total 68 99 150 159

Evaluation - Small Program

7

KLEE can’t support floating point

Small Program Evaluation

Function Category KLEE v1.4 KLEE v1.4 with
printf enabled

KLEE v2.2 Total bugs

user-defined function 68 68 68 72

printf function 0 31 82 87

Total 68 99 150 159

SMALL

Evaluation - Small Program

8

KLEE v1.4 does not check
pointers passed to external

library calls for validity

Small Program Evaluation

Function Category KLEE v1.4 KLEE v1.4 with
printf enabled

KLEE v2.2 Total bugs

user-defined function 68 68 68 72

printf function 0 31 82 87

Total 68 99 150 159

Example of the code

9

Small Program Evaluation

SMALL

When might KLEE miss a bug?

• It can be difficult to distinguish false negatives caused by resource
limitations (e.g., timeouts, insufficient symbolic input, path explosion
problem) from actual soundness problems.

• Concolic execution to the rescue!

10

Real Program Evaluation

Concolic KLEE

We force KLEE to follow the
path taken by an input
known to trigger the bug,
which factors out the
difficulty of path search from
the bug-finding task.

11

Real Program Evaluation

Real program analysis results
• 2000+ bugs, selected 243 with unique attack point

12

Real Program Evaluation

Why did Concolic KLEE miss these bugs?

13

Real Program Evaluation

 who missed 114 out of 119

Why Concolic KLEE missed these bugs?

• Differences between glibc and KLEE's uClibc.
• Some features missed in uClibc, e.g, libio.h
• File Structure differences

• Example:
struct GLIBC_File { struct UCLIBC_File {
 int nbytes; // offset 0 int nbytes; // offset 0
 char* _IO_write_base; // 4 size_t max_size; // 4
 char* _IO_read_base; // 12 char* first_byte; // 12
} }

14

Real Program Evaluation

Result of Concolic KLEE matches the number of correct triggered bug with
uClibc

15

Real Program Evaluation

Research Questions:

• What's the effect of symbolic file size?
• What search strategies work best for bug-finding?
• Relationship between coverage and bugs found?
• Does the depth of injected bugs affect KLEE's bug

finding performance?

Following examples are based on base64

16

Real Program Evaluation

Motivation:
• KLEE uses symbolic input file to replace

concrete input file
Results:

• Symbolic file size significantly impact
found bugs

• Minimum symbolic file size is 4
• 12 bytes, 16 bytes and 128 bytes have

best performance
17

Real Program Evaluation

Symbolic File Size

• LAVA bug contains lava_set
and lava_get

• Random Path Selection
outperforms all other searching
heuristics

• The bug-finding rate of
interleaved searching heuristics
based on the best searching
heuristics, except random state
search 18

Searching Heuristics

Real Program Evaluation

Motivation:
• Is line coverage correlated with

the number of finding bugs?
Results:

• Limitation of max found bugs
• Not directly correlated to the

bug-finding rate

19

Instruction coverage

Real Program Evaluation

Depth of injected bugs

Motivation
• What are “deep” bugs?
• How the “deep” bugs correlate to the bug-finding?

Definition of “Depth”
• In our experiment, “Depth” is not as simple as computing the distance from

the start of the program to the point where a bug manifests

20

Real Program Evaluation

Depth of injected bugs
• Using perf to measure the number of instructions executed for each bug

with the trigger input generated by LAVA
• The result shows 7 out of 28 bugs are deeply injected by LAVA
• KLEE found all 21 ''shallow'' bugs, but only found one out of the seven

deeply injected bugs.

21

Real Program Evaluation

Depth of injected bugs
example

• Static analysis:
shortest path vs. finding
bugs

• Dynamic analysis:
number of unique basic
blocks(UBBL) vs.
finding bugs

22

Real Program Evaluation

Conclusion

Main goal: To see whether automatically generated bugs are actually useful for
understanding, evaluating, and improving bug-finding tools.

Small program analysis: evaluating the soundness issues, floating point, printf
Real program analysis: let us understand how a bug-finding tool performs under
different configurations on real-world programs.
Concolic KLEE: our main finding from this experiment is that discrepancies
between uClibc (KLEE's libc implementation) and glibc can cause KLEE to miss
some bugs or report errors that are hard to reproduce.

23

Conclusion

