
Presentation:

Effective test generation for

Safety-Critical Software’s with KLEE

Authors:
ELSON KURIAN

GIOVANNI DENARO

DANIELA BRIOLA

PIETRO BRAIONE

AGENDA

• Goal
• Exploit symbolic execution for test generation

for safety critical software

• TECS: Test Engine for Critical Software
• Tool to automatically generate test cases for

SCADE programs

• Case study
• On 15 SCADE programs

• Conclusions

SAFETY- CRITICAL SOFTWARE

• Developing and Testing a Real-Time Embedded Critical Software for
our industrial partner in the Railway Domain (RFI)

ETCS IS PROGRAMMED WITH SCADE

• Based on state machines

• Compiles to C (by KCG compiler)

• Guarantees code that meets CEI EN 50128 certification

(a) Working Example (wingMirrorControl) for car

Our goal: Exploit symbolic execution for
testing SCADE programs using KLEE

• State of the art: Open problems of symbolic execution[1], e.g., due to
• Coping with the path explosion problem

• Suitably handling non-numeric inputs
• pointers

• references to dynamically allocated, possibly recursive data structures

• Tolerating the limitations of constraint solvers with complex non-linear constraints

[1] Baldoni et al. A Survey of Symbolic Execution Techniques. ACM CSUR 2018

[2] Cadar et al. KLEE. USENIX 2008

Our intuition: These problems are hard to solve in general,

but the restrictions imposed by the development process of safety-critical

softwares can foster effective solutions

For example, with SCADE

• SCADE generates KCG C code with safety-oriented restrictions

• KCG restrictions
• No dynamic memory allocation (e.g., no malloc)

• No pointer arithmetic, no pointer alias

• No recursive (unbounded) data structures

• No recursion

• No loops with unbounded conditions (e.g., no while (TRUE) loops)

https://www.ansys.com/it-it/products/embedded-software/ansys-scade-suite

Our Research
Hypothesis

• Automated test generation based on
symbolic execution can be beneficial for
systematically testing safety-critical
software

• The restrictions imposed by the safety-
critical softwares can foster effective
solutions.

• Our context: SCADE and KCG Code

AGENDA

• Goal
• Exploit symbolic execution for test generation

for safety critical software

• TECS: Test Engine for Critical Software
• Tool to automatically generate test cases for

SCADE programs

• Case study
• On 15 SCADE programs

• Conclusions

TECS: Test Engine for Critical Software

• Automatically generate unit-level test cases for SCADE

TECS: Test Engine for Critical Software

SCADE & KCG

Kcg_types:

…

/* WingMirrorState/ */

typedef enum kcg_tag_WingMirrorState { OPEN, CLOSED }

WingMirrorState;

/* Lock/ */

typedef enum kcg_tag_Lock { UNLOCKED, LOCKED } Lock;

…

/* WingMirrorArray/ */

typedef WingMirrorState WingMirrorArray[2];

/* WingMirrorData/ */

typedef struct kcg_tag_WingMirrorData {

kcg_bool automaticControl;

WingMirrorArray mirrorState;

} WingMirrorData;

…

WingMirrorControl_CarControl.c

…

void WingMirrorControl_CarControl(

inC_WingMirrorControl_CarControl *inC,

outC_WingMirrorControl_CarControl *outC)

{

SSM_ST_WingMirrorFSM WingMirrorFSM_state_act;

kcg_size idx;

switch (outC->WingMirrorFSM_state_nxt) {

case SSM_st_CAR_IS_UNLOCKED_WingMirrorFSM :

if (inC->ctrl == LOCKED) {

WingMirrorFSM_state_act = SSM_st_CAR_IS_LOCKED_WingMirrorFSM;

}

else {

WingMirrorFSM_state_act = SSM_st_CAR_IS_UNLOCKED_WingMirrorFSM;

}

break;

…

TECS: Test Engine for Critical Software

The Driver Synthesizer

• Unfolds all fields of data structures

• Call multiple times the target
function to satisfy the “single-state-
path-coverage” criterion

• Symbolically executes all paths of
target function

• Provides the entry-function to KLEE

TECS: Test Engine for Critical Software

Minimizer and Test Synthesizer

• Minimal subset of paths with
maximum statement coverage

• Path selection task solved with a
linear programming library [GLPK1]

• Test inputs from Minimizer ->
SCADE (.sss)format

[1] https://www.gnu.org/software/glpk/

AGENDA

• Goal
• Exploit symbolic execution for test generation

for safety critical software

• TECS: Test Engine for Critical Software
• Tool to automatically generate test cases for

SCADE programs

• Case study
• On 15 SCADE programs

• Conclusions

Research Questions

• How many execution paths TECS analyses?

• How long does it take overall to complete the test generation
process?

RQ1: Does TECS accomplish test generation within
acceptable test budgets?

• How many test cases does it generate?

• How thorough are the test suites?

• How do test suites compare with manually derived test suites?

RQ2: Which is the quality of the test suites?

Subject Programs

• 15 programs out of the on-board
signalling unit for high-speed rail
that our industrial partner is
currently developing

Subject
SCADE Model

C code LOC
#States #Transistions #Input #Output

shunting 5 10 12 14 646

dc_1 1 1 13 7 175

dc_2 1 1 1 2 43

dc_3 1 1 5 3 95

dc_4 1 1 3 4 62

dc_5 1 1 3 1 32

dc_6 1 1 3 4 67

dc_7 1 1 3 1 32

dc_8 1 1 2 1 30

dc_9 1 1 5 15 464

dc_10 1 1 3 9 239

dc_11 1 1 1 3 69

dc_12 1 1 14 17 96

dc_13 1 1 3 7 67

dc_14 1 1 1 1 35

sorting railway

vehicles into

complete trains

To check the consistency of

the data that the on-board

unit receives from the ground

components

Table: Statistics of the subject programs

Results

program
TECS

time(s) #paths #tests cov_tests

shunting 321 3,367 20 82%

dc_1 0.263 120 8 91.86%

dc_2 0.023 4 2 80%

dc_3 0.086 16 4 100%

dc_4 0.08 5 2 95.45%

dc_5 0.042 4 2 89.29%

dc_6 0.064 3 2 92.65%

dc_7 0.058 4 2 100%

dc_8 0.039 4 2 100%

dc_9 0.082 9 8 89.29%

dc_10 0.461 87 6 100%

dc_11 0.047 3 1 100%

dc_12 0.061 4 2 70.59%

dc_13 0.076 20 4 100%

dc_14 0.053 4 2 86.36%
Table: Results of TECS for the subject programs considered in our case study

Does TECS accomplish

test generation within

acceptable test

budgets?

Which is the

quality of the

test suites?

Results

program
TECS manual test

time(s) #paths #tests cov_tests time(hr) #tests cov-tests

shunting 321 3,367 20 82% 80 15 94.55%

dc_1 0.263 120 8 91.86% - - -

dc_2 0.023 4 2 80% - - -

dc_3 0.086 16 4 100% - - -

dc_4 0.08 5 2 95.45% - - -

dc_5 0.042 4 2 89.29% - - -

dc_6 0.064 3 2 92.65% - - -

dc_7 0.058 4 2 100% - - -

dc_8 0.039 4 2 100% - - -

dc_9 0.082 9 8 89.29% - - -

dc_10 0.461 87 6 100% - - -

dc_11 0.047 3 1 100% - - -

dc_12 0.061 4 2 70.59% - - -

dc_13 0.076 20 4 100% - - -

dc_14 0.053 4 2 86.36% - - -
Table: Results of TECS for the subject programs considered in our case study

Does TECS accomplish

test generation within

acceptable test

budgets?

Which is the

quality of the

test suites?

AGENDA

• Goal
• Exploit symbolic execution for test generation

for safety critical software

• TECS: Test Engine for Critical Software
• Tool to automatically generate test cases for

SCADE programs

• Case study
• On 15 SCADE programs

• Conclusions

Conclusions

• We are studying the feasibility of an automated test generation approach
• Based on symbolic execution
• Specifically tailored on the characteristics of programming languages for safety-critical

software systems

• We instantiated the proposed approach with the tool TECS
• Test generator for programs written the SCADE language

• The initial case study suggest that the approach has good potential

• We achieved high model coverage for 15 safety-critical programs in SCADE
• The test suites are of manageable size
• The test suites compare well and are complementary with respect to manual test

suites

• Work in progress
• Extensive experiments in the testing phase of the project

Any Question ?

Thank You !!!

Elson Kurian: e.kurian@campus.unimib.it Giovanni Denaro: giovanni.denaro@unimib.it
Daniela Briola: daniela.briola@unimib.it Pietro Braione: pietro.braione@unimib.it

mailto:e.kurian@campus.unimib.it
mailto:giovanni.denaro@unimib.it
mailto:daniela.briola@unimib.it
mailto:pietro.braione@unimib.it

