
Introduction to TracerX
Weakest Interpolation

Results & Future Directions

TracerX: Dynamic Symbolic Execution with Interpolation

Joxan JAFFAR∗, Rasool MAGHAREH?,
Sangharatna Godboley†, Arpita Dutta∗

∗National University of Singapore, Singapore
{joxan,arpita}@comp.nus.edu.sg

?Huawei Canada Research Centre, Canada
rasool.maghareh@huawei.com

†National Institute of Technology Warangal, India
sanghu@nitw.ac.in

KLEE Workshop - June 2021

TracerX: Dynamic Symbolic Execution with Interpolation 1/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

TracerX

Introducing TracerX symbolic execution approach
Based on the KLEE symbolic virtual machine
Perform Interpolation (information from already traversed (symbolic execution)
subtree) to prune other subtrees

Second place in RERS 2020 Challenge (+ Frama-C for unbounded prog. )
Six place in Test-comp 2021 & 2020

Website: https://tracer-x.github.io/
Github: https://github.com/tracer-x/

TracerX: Dynamic Symbolic Execution with Interpolation 2/15

https://tracer-x.github.io/
https://github.com/tracer-x/


Introduction to TracerX
Weakest Interpolation

Results & Future Directions

From KLEE TO TracerX

DFS Forward Symbolic Execution to find feasible paths (Similar to KLEE)
Intermediate execution states preserved (Unlike KLEE)
Path interpolants are generated for each path during backward tracking
Tree interpolants are generated as conjunction of path interpolants
Tree interpolants then used for subsumption at similar program points

2: PRUNE

1: LEARN

TracerX: Dynamic Symbolic Execution with Interpolation 3/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Symbolic Execution Tree with Interpolation

x = 0;
if (b1) x += 3 else x += 2
if (b2) x += 5 else x += 7
if (b3) x += 9 else x += 14
{x <= 24}

- Can we subsume (prune)
〈5b〉 with the tree interpolant
generated at 〈5a〉?

- Similarly subsume 〈8b〉
with the interpolant at 〈8a〉?

TracerX: Dynamic Symbolic Execution with Interpolation 4/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Interpolation: Weakest Precondition

1 PATH Interpolant
Path-based “weakest precondition”

2 TREE Interpolant
Tree Interpolant are computed as conjunction of PATH interpolants

Ideal interpolant is the weakest precondition (WP)
of the target. Unfortunately, WP is intractable to compute

Assume (b1 ∧ ¬b2 ∧ ¬b3) is UNSAT.
WP is:
b1 −→ (¬b2 ∧ b3 ∧ x ≤ 7) ∨ (b2 ∧ x ≤ 4)
¬b1 −→ x < 3

Essentially, WP is exponentially disjunctive

Challenge is to obtain a conjunctive approximation

TracerX: Dynamic Symbolic Execution with Interpolation 5/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Interpolation: Approximation of Weakest Precondition

A Path is a sequence of assignment and assume instructions:

1 Interpolant of Assignment instruction:

WP(inst , ω) = · · · inverse transition of inst over ω
Implemented at LLVM IR level: LD/ST, add, sub, cmp, cast, GEP, etc.
e.g. ω : x ≤ 15 and inst : x = z + 2, then WP(inst , ω) : z ≤ 13

2 Interpolant of Assume instruction (C is incoming Context):
{C}
assume(B)
{ω}

WP Approximation: find C̄ to replace C
ABDUCTION PROBLEM !!!

TracerX: Dynamic Symbolic Execution with Interpolation 6/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Interpolation: Approximation of Weakest Precondition

This algorithm is the heart of TracerX:
1 We compute finest partition so that var(Ci) ∗ var(Cj) s.t . i 6= j :

{C1 ∗ C2 ∗ C3 ∗ ... ∗ Cn} assume(B) {ω1 ∗ ω2 ∗ ω3 ∗ ... ∗ ωm}
(∗ is as in separation logic).

2 Bunch Ci into three:
Target independent: The Ci which are separate from B and ω.
Action: Replace Ci with true, i.e. remove Ci .

Guard independent: Consider Cgi ≡ Ci s.t. Ci ∗ B; and, ωgi ≡ ωj s.t. B ∗ ωj .
Action: Replace Cgi by ωgi .

Remainder of the Ci : We do not capture exact WP for this group.
{z == 5} assume(x > z - 2) {x > 0} (e.g. z > 2 is the WP)
Action: No change to Ci , i.e. keep Ci .

TracerX: Dynamic Symbolic Execution with Interpolation 7/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Interpolation: Approximation of Weakest Precondition

Note 1: Our algorithm is fundamentally different from CDCL in SMT solvers.
Note 2: We use no solver calls in our algorithm.

We have OPTIONAL algorithms for the remainder of the Ci .
1 Elimination: The WP is true and x = 5 can be eliminated.

{x = 5} assume(x < 7) {x < 8}

2 Projection: The WP z > 2 can be computed by projection of
(x > z − 2) ∧ x > 0 over z.
{z == 5} assume(x > z - 2) {x > 0}

3 . . .

The OPTIONAL algorithms can be turned on/off by user.

TracerX: Dynamic Symbolic Execution with Interpolation 8/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Experiment Setting

47 programs from SV-COMP and Reactive Systems Challenge (RERS)
Industrial programs or have been used in testing and verification competitions

Two Experiments:
1 All targets: 5058

Each tool given 300 seconds for each target
2 Hard Targets: 1470

Not detected as reachable by KLEE in 5 minuets (representing testing)
Not detected as unreachable by Frama-C (representing static analysis)
Each tool given 600 seconds for each target

Presented in: TracerX: Dynamic Symbolic Execution with Interpolation
J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, 2020
https://arxiv.org/abs/2012.00556

TracerX: Dynamic Symbolic Execution with Interpolation 9/15

https://arxiv.org/abs/2012.00556


Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Experiment - All Targets

All targets: 5058 (300 seconds timeout)
TracerX wins in 1339 (26.57%) targets, while loses in only 112 (2.21%) targets
TracerX is 38.55x faster than KLEE and 137.56x faster than CBMC

TracerX: Dynamic Symbolic Execution with Interpolation 10/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Experiment - Hard Targets

Hard targets: 1470 (600 seconds timeout)
TracerX wins in 796 (54.15%) targets, while loses in only 64 (4.35%) targets
TracerX is 490.26x faster than KLEE and 37.50x faster than CBMC

TracerX: Dynamic Symbolic Execution with Interpolation 11/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Future Directions

Testing:
Modified Condition/Decision Coverage (MC/DC): A minimal set of test-cases
needed to ensure the safety (ISSTA 2021)
Guided search to find a path reaching a target test-case and proving
non-existence if not found in the end of search

Incremental Quantitative Analysis:
Ensure safety of non-functional features in embedded systems and safety
critical systems

Combinatorial Optimization (COP):
COP is widely applicable in AI
Run TracerX on a program that simulates a COP problem and use
Interpolation and Symmetry to prune (Submitted to CP 2021)

TracerX: Dynamic Symbolic Execution with Interpolation 12/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Conclusion

TracerX, Further Reading:
1 Website: https://tracer-x.github.io/
2 Github: https://github.com/tracer-x/
3 TracerX: Dynamic Symbolic Execution with Interpolation

J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, 2020
https://arxiv.org/abs/2012.00556

4 TracerX: Dynamic Symbolic Execution with Interpolation (competition
contribution) J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, FASE 2020

5 Toward Optimal MC/DC Test Case Generation
S. Godboley, J. Jaffar, R. Maghareh, A. Dutta, ISSTA 2021

TracerX: Dynamic Symbolic Execution with Interpolation 13/15

https://tracer-x.github.io/
https://github.com/tracer-x/
https://arxiv.org/abs/2012.00556


Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Backup: WP Interpolation Example

Compute path interpolant for left path:
1 Target independent: a > 0 (remove

it).
2 Guard independent:

b = 5 ∧ c = 2 ∧ d = 4
Replace with b ≤ 580 ∧ c + 2d ≤ 57.

3 Rest: −1 ≤ x ≤ 1 (keep it).

Result (left path):
b ≤ 580 ∧ c + 2d ≤ 57 ∧ −1 ≤ x ≤ 1
Result (right path):
b ≤ 760 ∧ −1 ≤ x ≤ 1
Tree Interpolant: Conjunction of both.
After applying OPTIONAL algorithm:
b ≤ 580 ∧ c + 2d ≤ 57 ∧ −2 ≤ x ≤ 5

Incoming Context:
a > 0 ∧ b = 5 ∧ −1 ≤ x ≤ 1 ∧ c = 2 ∧ d = 4

TracerX: Dynamic Symbolic Execution with Interpolation 14/15



Introduction to TracerX
Weakest Interpolation

Results & Future Directions

Backup: Full Example

DFS traversal.

Without interpolation: The full tree
is traversed.

With interpolation:
1 〈8b〉 context contains x = 10. It

is subsumed with the tree
interpolant from 〈8a〉: x ≤ 10.

2 〈5b〉 context contains x = 2.
Subsumed with the tree
interpolant from 〈5a〉: x ≤ 3.

3 Big subtree traversal is avoided.

TracerX: Dynamic Symbolic Execution with Interpolation 15/15


	Introduction to TracerX
	Weakest Interpolation
	Results & Future Directions

