TracerX: Dynamic Symbolic Execution with Interpolation

Joxan JAFFAR*, Rasool MAGHAREH*,
Sangharatna Godboley', Arpita Dutta*

*National University of Singapore, Singapore
{joxan,arpital@comp.nus.edu.sg
*Huawei Canada Research Centre, Canada
rasool.maghareh@huawei.com
TNational Institute of Technology Warangal, India
sanghu@nitw.ac.in

KLEE Workshop - June 2021

TracerX: Dynamic Symbolic Execution with Interpolation

Introduction to TracerX

TracerX

@ Introducing TracerX symbolic execution approach

e Based on the KLEE symbolic virtual machine
e Perform Interpolation (information from already traversed (symbolic execution)
subtree) to prune other subtrees

@ Second place in RERS 2020 Challenge (+ Frama-C for unbounded prog.)
@ Six place in Test-comp 2021 & 2020

@ Website: https://tracer—-x.github.io/
@ Github: https://github.com/tracer—x/

TracerX: Dynamic Symbolic Execution with Interpolation

https://tracer-x.github.io/
https://github.com/tracer-x/

Introduction to TracerX

From KLEE TO TracerX

@ DFS Forward Symbolic Execution to find feasible paths (Similar to KLEE)
@ Intermediate execution states preserved (Unlike KLEE)

@ Path interpolants are generated for each path during backward tracking
@ Tree interpolants are generated as conjunction of path interpolants

@ Tree interpolants then used for subsumption at similar program points

LLVM IR KLEE &Y SMT Solver
I Output

Interpolation Engine

¢ —yf

2: PRUNE

G 5 Clang

ObjC

Annotations

TracerX: Dynamic Symbolic Execution with Interpolation

Introduction to TracerX

Symbolic Execution Tree with Interpolation

x = 0; (1?9
if (bl) x += 3 else x += 2 o
if (b2) x += 5 else x += 7 b s oht
if (b3) x += 9 else x += 14 3)/337
{x <= 24} s
b2 L b2
< ~
- Can we subsume (prune) (i‘f?? NG
. . X=x+5 X=X+ X=X+5
(5b) with the tree interpolant P ’
<8a> (<8b>)
generated at (5a)? b3)X b3 b_,,}/i b3 b3
L (iga)\ @o;y (5?b§//3 (\<10b/>\) ‘159c>/> ‘:%10‘:):" (59di,? {\<10d/>}
- Slmllarly SUbsume <8b> X=X+9 le:x+14’ x—x+9:7x:x+1z\/ x*x+971‘7’7 1;1/ = 91'7 \T\/ 14
i R = | d = ‘x—x+ X=x+9, |x:x+
? . X Y Y 2 LA
Wlth the |nterp0|ant at <8a> ! @{9 @{@ L<1}c> <11d>\ ‘<119>4 \(11f>, {<;!_1g, \<\11,">

assert (x < 24)

Weakest Interpolation

Interpolation: Weakest Precondition

@ PATH Interpolant
Path-based “weakest precondition”

@ TREE Interpolant
Tree Interpolant are computed as conjunction of PATH interpolants

@ |deal interpolant is the weakest precondition (WP)
of the target. Unfortunately, WP is intractable to compute
Assume (b1 A =b2 A —b3) is UNSAT.
WP is:
bl — (b2 AB3AX <T)V (b2 X < 4)
-b1 — x <3

@ Essentially, WP is exponentially disjunctive
@ Challenge is to obtain a conjunctive approximation

TracerX: Dynamic Symbolic Execution with Interpolation

Weakest Interpolation

Interpolation: Approximation of Weakest Precondition

A Path is a sequence of assignment and assume instructions:
@ |Interpolant of Assignment instruction:

e WP(inst,w) = --- inverse transition of inst over w
e Implemented at LLVM IR level: LD/ST, add, sub, cmp, cast, GEP, etc.
e eg.w:x<15andinst: x = z+ 2, then wrP(inst,w) : z <13

@ Interpolant of Assume instruction (C is incoming Context):
{C}
assume(B)
fw}]
e WP Approximation: find C to replace C
o ABDUCTION PROBLEM !!!

TracerX: Dynamic Symbolic Execution with Interpolation

Weakest Interpolation

Interpolation: Approximation of Weakest Precondition

This algorithm is the heart of TracerX:

@ We compute finest partition so that var(C;) « var(C;) s.t. i # j:
{Ci+%Cox C3x...x Cp} assume(B) {wq * wo * w3 * ... ¥ wm}
(x is as in separation logic).

@ Bunch C; into three:

e Target independent: The C; which are separate from B and w.
Action: Replace C; with true, i.e. remove C;.

e Guard independent: Consider Cy = C; s.t. Cj * B; and, wgi = wj S.t. B * wj.
Action: Replace Cy by wg;.

o Remainder of the C;: We do not capture exact WP for this group.
{z==5} assume(x>z-2) {x>0} (e.g.z>2istheWP)
Action: No change to C;, i.e. keep C;.

TracerX: Dynamic Symbolic Execution with Interpolation

Weakest Interpolation

Interpolation: Approximation of Weakest Precondition

Note 1: Our algorithm is fundamentally different from CDCL in SMT solvers.
Note 2: We use no solver calls in our algorithm.

We have OPTIONAL algorithms for the remainder of the C;.
@ Elimination: The WP is true and x = 5 can be eliminated.
{x=5} assume(x<7) {x<8}

© Projection: The WP z > 2 can be computed by projection of
(x>z—-2)Ax>0over z.
{z==5} assume(x>z-2) {x>0}

Q ..

The OPTIONAL algorithms can be turned on/off by user.

TracerX: Dynamic Symbolic Execution with Interpolation

Results & Future Directions

Experiment Setting

47 programs from SV-COMP and Reactive Systems Challenge (RERS)
@ Industrial programs or have been used in testing and verification competitions
Two Experiments:
@ All targets: 5058
e Each tool given 300 seconds for each target
© Hard Targets: 1470
o Not detected as reachable by KLEE in 5 minuets (representing testing)
o Not detected as unreachable by Frama-C (representing static analysis)
e Each tool given 600 seconds for each target
Presented in: TracerX: Dynamic Symbolic Execution with Interpolation
J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, 2020
https://arxiv.org/abs/2012.00556

TracerX: Dynamic Symbolic Execution with Interpolation

https://arxiv.org/abs/2012.00556

Results & Future Directions

Experiment - All Targets

All targets: 5058 (300 seconds timeout)
TracerX wins in 1339 (26.57%) targets, while loses in only 112 (2.21%) targets
TracerX is 38.55x faster than KLEE and 137.56x faster than CBMC

6000 B Time Out 150
B Unreachable
B Reachable

4000

Times faster

Targets

2000

0 -

KLEE CBMC TracerX Speedup vs KLEE Speedup vs CBMC

TracerX: Dynamic Symbolic Execution with Interpolation

Results & Future Directions

Experiment - Hard Targets

Hard targets: 1470 (600 seconds timeout)
TracerX wins in 796 (54.15%) targets, while loses in only 64 (4.35%) targets
TracerX is 490.26x faster than KLEE and 37.50x faster than CBMC

1500 B Time Out 500
B Unreachable
B Reachable 400
1000
- g 30
2 E
2 $
il E 200
500 =
100
0 I
KLEE CBMC TracerX Speedup vs KLEE Speedup vs CBMC

TracerX: Dynamic Symbolic Execution with Interpolation

Results & Future Directions

Future Directions

Testing:
@ Modified Condition/Decision Coverage (MC/DC): A minimal set of test-cases
needed to ensure the safety (ISSTA 2021)
@ Guided search to find a path reaching a target test-case and proving
non-existence if not found in the end of search

Incremental Quantitative Analysis:
@ Ensure safety of non-functional features in embedded systems and safety
critical systems

Combinatorial Optimization (COP):
@ COP is widely applicable in Al
@ Run TracerX on a program that simulates a COP problem and use
Interpolation and Symmetry to prune (Submitted to CP 2021)

TracerX: Dynamic Symbolic Execution with Interpolation

Results & Future Directions

Conclusion

TracerX, Further Reading:
@ Website: https://tracer—-x.github.io/
@ Github: https://github.com/tracer-x/

© TracerX: Dynamic Symbolic Execution with Interpolation
J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, 2020
https://arxiv.org/abs/2012.00556

© TracerX: Dynamic Symbolic Execution with Interpolation (competition
contribution) J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, FASE 2020

©@ Toward Optimal MC/DC Test Case Generation
S. Godboley, J. Jaffar, R. Maghareh, A. Dutta, ISSTA 2021

TracerX: Dynamic Symbolic Execution with Interpolation

https://tracer-x.github.io/
https://github.com/tracer-x/
https://arxiv.org/abs/2012.00556

Results & Future Directions

Backup: WP Interpolation Example

Compute path interpolant for left path:
Incoming Context:

@ Target independent: a > 0 (remove a>0Ab=5A-1<x<1Ac=2Ad=4

it).
© Guard independent: Tree intp: b<580 A-2<x<5Ac+2d<57

b=5Ac=2Ad=4

Replace with b < 580 A ¢ + 2d < 57.

© Rest: —1 < x <1 (keep it).

Result (left path):

b<580Ac+2d <57AN-1<x<1
Result (right path):
b<760N—-1<x<1

Tree Interpolant: Conjunction of both. Path intp 1: b <580 A Path intp 2:

After applying OPTIONAL algorithm: 0<x<5Ac+2d<57 b<760 Ax>-2
b<580Ac+2d<57A-2<x<5

TracerX: Dynamic Symbolic Execution with Interpolation

Results & Future Directions

Backup: Full Example

@ DFS traversal.

@ Without interpolation: The full tree
is traversed.

@ With interpolation:

@ (8b) context contains x = 10. It
is subsumed with the tree
interpolant from (8a): x < 10.

@ (5b) context contains x = 2.
Subsumed with the tree
interpolant from (5a): x < 3.

© Big subtree traversal is avoided.

assert (x < 24)

TracerX: Dynamic Symbolic Execution with Interpolation

	Introduction to TracerX
	Weakest Interpolation
	Results & Future Directions

