
Open-Source
C++ Support for KLEE&

Felix Rath, Klaus Wehrle

https://comsys.rwth-aachen.de KLEE’21 Workshop, 2021-06-11

https://comsys.rwth-aachen.de


Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)

• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:

I Z3 - Theorem prover by Microsoft Research
I RE2 - Regular expression library by Google
I jtc - JSON query & manipulation tool

• Publicly available

I Related work: KLOVER [Li et al., CAV 2011]

2



Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)
• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:

I Z3 - Theorem prover by Microsoft Research
I RE2 - Regular expression library by Google
I jtc - JSON query & manipulation tool

• Publicly available

I Related work: KLOVER [Li et al., CAV 2011]

2



Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)
• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:

I Z3 - Theorem prover by Microsoft Research
I RE2 - Regular expression library by Google
I jtc - JSON query & manipulation tool

• Publicly available

I Related work: KLOVER [Li et al., CAV 2011]

2



Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)
• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:
I Z3 - Theorem prover by Microsoft Research

I RE2 - Regular expression library by Google
I jtc - JSON query & manipulation tool

• Publicly available

I Related work: KLOVER [Li et al., CAV 2011]

2



Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)
• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:
I Z3 - Theorem prover by Microsoft Research
I RE2 - Regular expression library by Google

I jtc - JSON query & manipulation tool

• Publicly available

I Related work: KLOVER [Li et al., CAV 2011]

2



Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)
• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:
I Z3 - Theorem prover by Microsoft Research
I RE2 - Regular expression library by Google
I jtc - JSON query & manipulation tool

• Publicly available

I Related work: KLOVER [Li et al., CAV 2011]

2



Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)
• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:
I Z3 - Theorem prover by Microsoft Research
I RE2 - Regular expression library by Google
I jtc - JSON query & manipulation tool

• Publicly available

I Related work: KLOVER [Li et al., CAV 2011]

2



Overview

• Since KLEE 2.0: General support for many C++ programs (libc++ support)
• Since KLEE 2.2: C++ exception handling supported

• Successfully used it on:
I Z3 - Theorem prover by Microsoft Research
I RE2 - Regular expression library by Google
I jtc - JSON query & manipulation tool

• Publicly available
I Related work: KLOVER [Li et al., CAV 2011]

2



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler

I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime

I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler

I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime

I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR

I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime

I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++

I Fully lowers classes, inheritance, templates, closures, etc.
• Standard library & runtime

I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime

I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime

I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime
I std::cout, std::vector etc.

I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime
I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)

I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime
I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc

I Additional support required: Exception handling
• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime
I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime
I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support

I Previously unimplemented instructions, etc.

3



C++ in KLEE

• What is required to support C++ in KLEE?

• Frontend compiler
I Lowers C++ to LLVM IR
I clang++
I Fully lowers classes, inheritance, templates, closures, etc.

• Standard library & runtime
I std::cout, std::vector etc.
I We use LLVM’s libc++ & libc++abi (threads disabled)
I Requires a libc
I Additional support required: Exception handling

• LLVM support
I Previously unimplemented instructions, etc.

3



Exception Handling

• C++ exception handling based on the Itanium C++ ABI

I Unwinding: Platform specific, language independent
I C++-rules: Platform independent, language specific

• KLEE implementation compatible

• Unwinding is C++-independent
• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Exception Handling

• C++ exception handling based on the Itanium C++ ABI
I Unwinding: Platform specific, language independent

I C++-rules: Platform independent, language specific
• KLEE implementation compatible

• Unwinding is C++-independent
• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Exception Handling

• C++ exception handling based on the Itanium C++ ABI
I Unwinding: Platform specific, language independent
I C++-rules: Platform independent, language specific

• KLEE implementation compatible

• Unwinding is C++-independent
• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Exception Handling

• C++ exception handling based on the Itanium C++ ABI
I Unwinding: Platform specific, language independent
I C++-rules: Platform independent, language specific

• KLEE implementation compatible

• Unwinding is C++-independent
• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Exception Handling

• C++ exception handling based on the Itanium C++ ABI
I Unwinding: Platform specific, language independent
I C++-rules: Platform independent, language specific

• KLEE implementation compatible

• Unwinding is C++-independent

• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Exception Handling

• C++ exception handling based on the Itanium C++ ABI
I Unwinding: Platform specific, language independent
I C++-rules: Platform independent, language specific

• KLEE implementation compatible

• Unwinding is C++-independent
• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Exception Handling

• C++ exception handling based on the Itanium C++ ABI
I Unwinding: Platform specific, language independent
I C++-rules: Platform independent, language specific

• KLEE implementation compatible

• Unwinding is C++-independent
• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Exception Handling

• C++ exception handling based on the Itanium C++ ABI
I Unwinding: Platform specific, language independent
I C++-rules: Platform independent, language specific

• KLEE implementation compatible

• Unwinding is C++-independent
• Can be reused by other languages

I New personality function needed

• Symbolic exception values supported

4



Real-World Results

• Tried on three-open source C++ projects

• 10 runs, 1 hour each, KLEE 2.2

• jtc

I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2

I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc

I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2

I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc

I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2

I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.

I Found three new bugs, and one uncaught exception
• RE2

I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2

I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2

I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2
I ~28.6% instr. cov.

I No bugs found
• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2
I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2
I ~28.6% instr. cov.
I No bugs found

• Z3

I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2
I ~28.6% instr. cov.
I No bugs found

• Z3
I ~0.3% instr. cov.

I New bug found: fclose(m_file) where m_file is NULL

5



Real-World Results

• Tried on three-open source C++ projects
• 10 runs, 1 hour each, KLEE 2.2

• jtc
I ~32.5% instr. cov.
I Found three new bugs, and one uncaught exception

• RE2
I ~28.6% instr. cov.
I No bugs found

• Z3
I ~0.3% instr. cov.
I New bug found: fclose(m_file) where m_file is NULL

5



Conclusion

• Open-source C++ support for KLEE

• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support

• Exception handling in C++
• Language independent unwinding
• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6



Conclusion

• Open-source C++ support for KLEE
• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support
• Exception handling in C++
• Language independent unwinding
• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6



Conclusion

• Open-source C++ support for KLEE
• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support

• Exception handling in C++
• Language independent unwinding
• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6



Conclusion

• Open-source C++ support for KLEE
• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support
• Exception handling in C++

• Language independent unwinding
• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6



Conclusion

• Open-source C++ support for KLEE
• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support
• Exception handling in C++
• Language independent unwinding

• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6



Conclusion

• Open-source C++ support for KLEE
• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support
• Exception handling in C++
• Language independent unwinding
• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6



Conclusion

• Open-source C++ support for KLEE
• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support
• Exception handling in C++
• Language independent unwinding
• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6



Conclusion

• Open-source C++ support for KLEE
• Required components

I Frontend compiler, standard library & compiler runtime, LLVM support
• Exception handling in C++
• Language independent unwinding
• Applicable to real-world programs

• Thanks to: Lukas Wölfer, Julian Büning, Martin Nowack, Timotej Kapus, Cristian
Cadar

• Try it out on your project!

6


