Imperial College KLEE '21

London

Automating function selection for
patch testing via chopped symbolic
execution

J. Ruiz, M. Nowack, A. Zaki, C. Cadar

Work in progress

Imperial College . . KLEE *21
Loﬁdon J Motivation

Patch testing:
- programs change all the time
- construct automatic test cases
that cover the patch /

Symbolic execution is expensive
- path explosion
- constraint solving

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 2

Imperial College
London

Chopper

Chopper: chopped symbolic execution
- based on KLEE
- skip parts of the code
— functions irrelevant to the patch
- main challenge:
manual function selection

KLEE 21

Chopped Symbolic Execution

Noam Rinetzky Cristian Cadar
Tel Aviv University Imperial College London
Tsrael United Kingdom

1

the code with symbolic values instead of concrete ones. Symbolic

David Trabish Andrea Mattavelli
Tel Aviv University Imperial College London
Israel United Kingdom
ABSTRACT
. H despits

problem and constraint solving limitations.
In this paper, we propose chopped symbolic execution a novel

ones that manipulate symbols, and add appropriate constraints on
the symbolic values. In particular. whenever the symbolic executor

hes sputs, it
determines the feasibilty of both sides of the branch. and crestes
v

form of symbolic execution that pe -
esting parts of the code to exclude during the analysis, thus only
targeting the exploration to paths of importance. However. the
excluded parts are not summarily ignored. as this may lead to
both false positives and false negatives. Instead. they are exccuted
lazily, when their effect may be observable by code under anal-
ysis. Chopped symbolic execution leverages various on-demand

o separately. Thi ferred to a5

forking. refines the conditions on the symbolc vahies by adding

appropriate constraint on each path according to the conditions

o0 the branch. Test cases are generated by finding concrete values

for the symbolic inputs that satisfy the path conditions. To both
d

solutions that satisfies them, symbolic exceution engines employ
[19).

static analy fraguments
lfects, thas avoid The Challenge. be et

annotations and imprecision finding sublle bugs n 2 variety of software [3, 11, 12.25, 39, and

Ou preliminary results show that the approach can effectvely arted to see indusri) ake-up [15, 15, 5], However, » key

scenarios, including falure reproduction and test suite augmenta-
tion.

CCS CONCEPTS

- Software and its engineering — Software testing and de-

bugging

KEYWORDS

Symbolic exccution, Static anlysis. Program slicing

ACM Reference Format:

Darid Trabish. Andres Matavell Noam Rinetky. and Crisian Cadar 015
1.0 ntermational Conf

g

s/ doLorg/10.114573180155 3180251

1 INTRODUCTION

Symbolic exceution lies at the core of many moder techaiques
1o software testing, automatic program repair. and reverse engi-
neering [3, 11, 16,24, 32,35]. At 2 high-level, symbolic execution
systematically explores multiple paths in a program by running

remaining challenge i scalability. particularly related to constraint
solving cost and path explosion [14].

constraint solver that are often Large and complex when analyring.

real-world programs. As a result, constraint solving dominates

runtime for the majority of non-trivial programs [30, 33]. Recent

rescarch has tackled the challenge by proposing several constraint
I

12,21,27,33-35, 41, 45].
Path explosion represents the other big challenge facing sym-
ey b Path explos

refers to the challenge of navigating the huge mumber of paths in
real programs, which is usually at lest exponential to the number
of staic branches in the code. The common mechanism employed
by symbolic executors to deal with this problem s the use of search.
heuristics to prioritise path exploration. One particularly effc-
tive heuristic focuses on achieving high coverage by guiding the

pl
12,43] In practice, these heuristcs only partially alleviate the path
explosion problem, as the following example demonstrates.

Motivating Example. The extraet_octet() function, shown in
Figure 1, is simplified version of 3 function from the 11btasn]

ASN.1 encoding rules i string.!
The ASN.1 protocol is used

applcations, such as those handling pablic key certificates and

electronic mail. Versions of 11btasn! before 45 are affected by a

heapoverflow security vulnerabiliy that could be exploited via 3
ficate ? Unfortunstely, give B

s

D. Trabish, A. Mattavelli, N. Rinetzky, C. Cadar
Chopped Symbolic Execution, In ICSE '18

S —
J. Ruiz, M. Nowack, A. Zaki, C. Cadar 3

Automating function selection for patch testing via chopped symbolic execution

Imperial College
Loﬁdon J Chopper

KLEE ’21

Chopper: lazy execution |

- skip functions |
- keep snapshots Sy
- monitor dependencies i
- trigger recoveries » Recovery(s)
but... Dependent(y) - yH+;
return;

... recoveries are costly

— needs good function selection Dependent(y) Recovery’(s)
+ Recovery’(£) T

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 4

KLEE ’21

Imperial Coll
TordcalN AutoChopper

AutoChopper: Chopper + automatic function selection

Good functions to skip:
+ average sized
+ many forks
+ unlikely to cause recoveries
+ unrelated to patch
+ few side effects (cleanup() v)
+ no external side effects (write() X)

S —
J. Ruiz, M. Nowack, A. Zaki, C. Cadar 5

Automating function selection for patch testing via chopped symbolic execution

Imperial College KLEE '21

London AutoChopper

AutoChopper: Chopper + automatic function selection

However...

- predicting recoveries is hard
- recoveries can be (very) costly

- interrupt long recoveries
— restart analysis without skipping this function

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 6

Imperial College . . . KLEE 21
Loﬁdon 2 Automatic function selection
AutoChopper components
- static pass [man
lists functions to keep |
f1 { f2 } [3]
I |
| I |
1 [5 J 6
[patch J 7

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 7

Imperial College AuoChopper | KLEE '21

London static heuristics
AutoChopper components i
keeps Ly vk
- static pass
lists functions to keep g T
i Chopper(keeps)
- dynamic pass 1
| . P KLEE :
restarts ana ysIs Sl | T »| keeps += £,
|
S
pchcoeed, | 1O/ O0M

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 8

Imperial CO"Qge AutoChopper KLEE ’21

London static heuristics
AutoChopper components i
keeps = £,f,,...£f
- static pass B
lists functionstokeep T
| Chopper(keeps) :
- dynamic pass B
. : KLEE :
restarts analysis Smbolc ¢ INGISCVY........ ol keeps += I,
- target searcher |
searches for shortest . success TO /0OM
i i (patch covered)

path to the patch

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 9

Imperial College
London

libtasn1 CVEs - target

Experiments: automating Chopper

Vulnerability 20?2\{1E&-369 201(4;1\-/?5671 201(4;1\-/5672 201(51\-/93673 20%{5{;06 20%@522
KLEE 05:49 T/O 00:02 T/O 00:57 | 27:25
Chopper 01:20 06:21 05:41 07:29 | 01:55 | 00:21

AutoChopper | 02:33 0047 | 0817 | 01:10 | 0112 | 0549

KLEE ’21

AutoChopper performances compare to that of Chopper

N
J. Ruiz, M. Nowack, A. Zaki, C. Cadar 10

Automating function selection for patch testing via chopped symbolic execution

Imperial College .] . KLEE 21

Lorvalore Experiments: automating Chopper
Ve CVE- CVE- CVE- CVE- CVE- CVE-

uinerabllity | 2012-1569 |2014-3467, | 2014-3467, | 2014-3467, | 2015-2806 | 2015-3622
DFS Chopper 00:31 00:03 | 01:19 | 00:06 T/O 12:26
AutoChopper | 00:36 00:48 T/O T/O 00:50 | 02:04
T CVE- CVE- CVE- CVE- CVE- CVE-

uinerabllity | 2012-1569 |2014-3467, | 2014-3467, | 2014-3467, | 2015-2806 | 2015-3622
Coverage Chopper 01:39 02:05 05:21 T/O 01:41 00:17
AutoChopper 00:36 00:48 01:14 01:15 00:52 02:59

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 11

Imperial College KLEE '21

L Patch testing
.bc
bytecode
ASN1.c:36 .
WLLVM ASN1l.c:48
+ diffanalyze — AutoChopper
A0 BBSlet ASN1.c:50
diff chunks
(basic blocks)
A i e e
T i s I
= anasua L S e
git his[ory = assaes "ansans

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 12

Imperial Coll . . ’
lordon 9% Experiments: patch testing A

Preliminary results (WiP)

libosip bc
Benchmark
KLEE AutoChopper KLEE AutoChopper
EEIB IR 1850 (38) 1691 (374)
(commits)
Reachable 982 1636
Success 130 270 146 124
(over reachables) 13.2% 27.5% 8.9% 7.6%
T/O = 15min

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 13

Imperial College .
Loﬁdon = Conclusion

KLEE ’21

Automating chopped symbolic execution:
- nearing Chopper’s performances
- some pre-results in automated patch testing

Ongoing challenges
- more benchmarks (libtasn1, libyaml, binutils...)
- preserve debug information better
- rewind symbolic execution instead of restarting

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 14

Imperial College . KLEE '21
London Appendices

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 15

Imperial College . . KLEE '21
e LR Experiments: automating Chopper
libtasn1 CVEs
Vulnerability CVE-2012-1569 CVE-2014-3467-1 CVE-2014-3467-2 CVE-2014-3467-3 CVE-2015-2806 CVE-2015-3622

Searcher |Rand| DFS | Cov Tgt |Rand | DFS | Cov | Tgt |Rand| DFS | Cov | Tgt |Rand | DFS | Cov | Tgt [Rand | DFS | Cov | Tgt |Rand | DFS | Cov | Tgt

KLEE 05:58 | 01:04 | 08:43 | 05:49 | T/O |(01:13| T/O | T/O |00:03| T/O | 00:02|00:02| T/O | T/O | T/O | T/O |01:06| T/O |00:44|00:57 | T/O | T/O | 27:30|27:25

Chopper 01:05| 00:31 | 01:39 | 01:20 | 06:12 | 00:03 | 02:05 | 06:21 | 06:31 | 01:19 | 05:21 | 05:41 | 09:00 | 00:06 | T/O | 07:29|04:10 | T/O |01:4101:55|00:24 | 12:26 | 00:17 | 00:21

AutoChopper | 00:35 | 00:36 | 00:36 | 02:33 |00:48 | 00:48 | 00:48 | 00:47 [01:15| T/O | 01:14 08:17 [01:19| T/O | 01:15|01:10|00:51 | 00:50 | 00:52 | 01:12|02:58 | 02:04 | 02:59 | 05:49

Automating function selection for patch testing via chopped symbolic execution J. Ruiz, M. Nowack, A. Zaki, C. Cadar 16

Imperial College
London

Experiments: patch testing

Preliminary results (WiP)

libosip libyaml bc libtasn1
Benchmark
KLEE | ACSE @ KLEE | ACSE | KLEE | ACSE | KLEE | ACSE
Basic Blocks
(commits) 1850 (38) 2000 (52) 1691 (374) 500 (38)
Reachable 982 1636 162
Success 130 270 6 6 146 124 0 0
(overreachables) | 1329, | 275% | 1.8% | 1.8% | 89% | 7.6%

S —
J. Ruiz, M. Nowack, A. Zaki, C. Cadar 17

Automating function selection for patch testing via chopped symbolic execution

KLEE ’21

