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Issues with regression test suites:
➔ Focus on core behavior
➔ Provide haphazard coverage
➔ Use approximated oracles
➔ Sometimes not present at all
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Intuition
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Input Generation + P0 as oracle:
➔ focus on changed code
➔ thorough coverage
➔ no need for oracles
➔ fast enough for CI
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BRT-KLEE Overview
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Input Generation
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Input Generation
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Behavior Comparison
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BRT-KLEE Walk-through
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Address space elements compared:
● abnormal termination
● returning function value
● global variables
● output streams



Difference Analysis

● Group differences by program element

● Order dependent differences based on co-occurrence

● Rank differences by distance from changed code on the call graph



Evaluation: Implementation and Research Questions

Implementation:
➔ Program analysis and differencing: clang & llvm
➔ Symbolic execution engine: forked from KLEE 1.3

Research Questions:
➔ RQ1:  Can BRT-KLEE detect and effectively rank regressions?
➔ RQ2:  How do BRT-KLEE’s overapproximating results compare to a 

similar tool’s (Shadow’s) underapproximating results?
➔ RQ3:How does BRT-KLEE perform on mostly refactored code?



Evaluation: Setup and Benchmarks

RQ1:
➔ CoREBench: coreutils, find, and grep
➔ Evaluated with bug oracles  

RQ2: 
➔ CoREBench: coreutils

(Shadow published results)

program regressions identifiers LOC

rm 1 1044

cut 3, 6, 12, 17, 21 519

tail 4, 5, 16 1039

seq 7, 8, 9, 18, 19, 20 254

cp 10 2498

ls 13, 14 3106

du 15 624

expr 22 583

find 23 - 37 8,738

grep 38 - 52 6,153

make 53 - 70 23,805

redis N/A 121,989



Results
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- Automatically identified >50% known regressions
- Reported higher ranked FP in only 18/43 cases



Results
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Outperformed state-of-the-art
technique used as a baseline.



Tool Demonstration
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