
Extending KLEE to Support
Behavioral Regression Testing

Richard Rutledge, Alessandro Orso

Regression Testing

P0

P1

Test Runner &
Oracle Checker

Test Suite

Regression Errors

Issues with regression test suites:
➔ Focus on core behavior
➔ Provide haphazard coverage
➔ Use approximated oracles
➔ Sometimes not present at all

Input
Generation

Intuition

P0

P1

Test Runner &
Oracle Checker

Test Suite

Regression Errors

P0

Input Generation + P0 as oracle:
➔ focus on changed code
➔ thorough coverage
➔ no need for oracles
➔ fast enough for CI

Input
Generation

BRT-KLEE Overview

Change Identification

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1

Change Identification

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1Entry Points Entry Points

Input Generation

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0 & 1 Input Generation

Input Generation

11

12

13 14

1615

𝚫

1, 2, 3, 5, 2, 6

1, 2, 3, 4, 5, 2, 6

1, 2, 3, 5, 2, 3, 4, 5, 2, 6

1, 2, 6

block Control Flow Graph (CFG) Input paths:

Behavior Comparison

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1input

BRT-KLEE Walk-through

P0 P1

block

output

writebytes

putbyte

writebytes

foo

block

output

writebytes

bar

writebytes

putbyte

Address space elements compared:
● abnormal termination
● returning function value
● global variables
● output streams

Difference Analysis

● Group differences by program element

● Order dependent differences based on co-occurrence

● Rank differences by distance from changed code on the call graph

Evaluation: Implementation and Research Questions

Implementation:
➔ Program analysis and differencing: clang & llvm
➔ Symbolic execution engine: forked from KLEE 1.3

Research Questions:
➔ RQ1: Can BRT-KLEE detect and effectively rank regressions?
➔ RQ2: How do BRT-KLEE’s overapproximating results compare to a

similar tool’s (Shadow’s) underapproximating results?
➔ RQ3:How does BRT-KLEE perform on mostly refactored code?

Evaluation: Setup and Benchmarks

RQ1:
➔ CoREBench: coreutils, find, and grep
➔ Evaluated with bug oracles

RQ2:
➔ CoREBench: coreutils

(Shadow published results)

program regressions identifiers LOC

rm 1 1044

cut 3, 6, 12, 17, 21 519

tail 4, 5, 16 1039

seq 7, 8, 9, 18, 19, 20 254

cp 10 2498

ls 13, 14 3106

du 15 624

expr 22 583

find 23 - 37 8,738

grep 38 - 52 6,153

make 53 - 70 23,805

redis N/A 121,989

Results

14

bklee

bklee

- Automatically identified >50% known regressions
- Reported higher ranked FP in only 18/43 cases

Results

15

bklee

bklee

Outperformed state-of-the-art
technique used as a baseline.

Tool Demonstration

17

