
Title

The Long Road towards
Testing Multi-Threaded Programs
with KLEE

Daniel Schemmel, Julian Büning, David Laprell, Klaus Wehrle
RWTH Aachen University

https://comsys.rwth-aachen.de Zoomspace, 2021-06-11

https://github.com/por-se

Introduction

• As core counts rise, multi-threaded programs become more and more prevalent

We believe that Symbolic Execution can help test those programs [1]

Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.

Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.

Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.

Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks

2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.

Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher

3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.

Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.

Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

• Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.

Adding Basic Thread-Support to KLEE

• KLEE states are easily extended to track multiple stacks and instruction pointers

Executing every instruction interleaving causes immediate state explosion!

of possible paths #threads#instructions per thread

Tiny example:
Executing any one instruction turns one state intp #threads states

A posteriori approaches (searchers, state pruning) alone are insufficient!

3 Schemmel et. al.

Adding Basic Thread-Support to KLEE

• KLEE states are easily extended to track multiple stacks and instruction pointers
• Executing every instruction interleaving causes immediate state explosion!

of possible paths #threads#instructions per thread

Tiny example:
Executing any one instruction turns one state intp #threads states

A posteriori approaches (searchers, state pruning) alone are insufficient!

3 Schemmel et. al.

Adding Basic Thread-Support to KLEE

• KLEE states are easily extended to track multiple stacks and instruction pointers
• Executing every instruction interleaving causes immediate state explosion!

◮ # of possible paths = #threads#instructions per thread

Tiny example:
Executing any one instruction turns one state intp #threads states

A posteriori approaches (searchers, state pruning) alone are insufficient!

3 Schemmel et. al.

Adding Basic Thread-Support to KLEE

• KLEE states are easily extended to track multiple stacks and instruction pointers
• Executing every instruction interleaving causes immediate state explosion!

◮ # of possible paths = #threads#instructions per thread

◮ Tiny example: 820 = 2
60

Executing any one instruction turns one state intp #threads states

A posteriori approaches (searchers, state pruning) alone are insufficient!

3 Schemmel et. al.

Adding Basic Thread-Support to KLEE

• KLEE states are easily extended to track multiple stacks and instruction pointers
• Executing every instruction interleaving causes immediate state explosion!

◮ # of possible paths = #threads#instructions per thread

◮ Tiny example: 820 = 2
60

◮ Executing any one instruction turns one state intp #threads states

A posteriori approaches (searchers, state pruning) alone are insufficient!

3 Schemmel et. al.

Adding Basic Thread-Support to KLEE

• KLEE states are easily extended to track multiple stacks and instruction pointers
• Executing every instruction interleaving causes immediate state explosion!

◮ # of possible paths = #threads#instructions per thread

◮ Tiny example: 820 = 2
60

◮ Executing any one instruction turns one state intp #threads states

• A posteriori approaches (searchers, state pruning) alone are insufficient!

3 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

Data races are undefined behavior!
[C11 §5.1.2.4/25] [C18 §5.1.2.4/35]

4 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

Data races are undefined behavior!
[C11 §5.1.2.4/25] [C18 §5.1.2.4/35]

4 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

Data races are undefined behavior!
[C11 §5.1.2.4/25] [C18 §5.1.2.4/35]

4 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

Data races are undefined behavior!
[C11 §5.1.2.4/25] [C18 §5.1.2.4/35]

4 Schemmel et. al.

Data Race Detection

• Our KLEE fork detects data races as a new bug category

For each byte, we record which thread read/wrote it last
Efficient if a memory object is used by one thread exclusively

Most memory objects are not shared between threads
Symbolic accesses to shared memory objects may require SMT solving

5 Schemmel et. al.

Data Race Detection

• Our KLEE fork detects data races as a new bug category

• For each byte, we record which thread read/wrote it last

Efficient if a memory object is used by one thread exclusively

Most memory objects are not shared between threads
Symbolic accesses to shared memory objects may require SMT solving

5 Schemmel et. al.

Data Race Detection

• Our KLEE fork detects data races as a new bug category

• For each byte, we record which thread read/wrote it last
• Efficient if a memory object is used by one thread exclusively

Most memory objects are not shared between threads
Symbolic accesses to shared memory objects may require SMT solving

5 Schemmel et. al.

Data Race Detection

• Our KLEE fork detects data races as a new bug category

• For each byte, we record which thread read/wrote it last
• Efficient if a memory object is used by one thread exclusively

◮ Most memory objects are not shared between threads

Symbolic accesses to shared memory objects may require SMT solving

5 Schemmel et. al.

Data Race Detection

• Our KLEE fork detects data races as a new bug category

• For each byte, we record which thread read/wrote it last
• Efficient if a memory object is used by one thread exclusively

◮ Most memory objects are not shared between threads
◮ Symbolic accesses to shared memory objects may require SMT solving

5 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

call void @lock()

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

call void @unlock()

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

call void @lock()

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

call void @unlock()

6 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

call void @lock()
; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4
call void @unlock()

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

call void @lock()
; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4
call void @unlock()

6 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

call void @lock()
; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4
call void @unlock()

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

call void @lock()
; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4
call void @unlock()

6 Schemmel et. al.

Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

call void @lock()
; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4
call void @unlock()

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

call void @lock()
; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4
call void @unlock()

6 Schemmel et. al.

Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further

Happens all the time in parallel programs
E.g., consider two threads atomically incrementing a counter

We detect such cutoff events by hashing all memory

Also, our partial-order-reduction algorithm re-executes some states

These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!

7 Schemmel et. al.

Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further
◮ Happens all the time in parallel programs

E.g., consider two threads atomically incrementing a counter

We detect such cutoff events by hashing all memory

Also, our partial-order-reduction algorithm re-executes some states

These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!

7 Schemmel et. al.

Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further
◮ Happens all the time in parallel programs
◮ E.g., consider two threads atomically incrementing a counter

We detect such cutoff events by hashing all memory

Also, our partial-order-reduction algorithm re-executes some states

These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!

7 Schemmel et. al.

Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further
◮ Happens all the time in parallel programs
◮ E.g., consider two threads atomically incrementing a counter

• We detect such cutoff events by hashing all memory

Also, our partial-order-reduction algorithm re-executes some states

These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!

7 Schemmel et. al.

Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further
◮ Happens all the time in parallel programs
◮ E.g., consider two threads atomically incrementing a counter

• We detect such cutoff events by hashing all memory

• Also, our partial-order-reduction algorithm re-executes some states

These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!

7 Schemmel et. al.

Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further
◮ Happens all the time in parallel programs
◮ E.g., consider two threads atomically incrementing a counter

• We detect such cutoff events by hashing all memory

• Also, our partial-order-reduction algorithm re-executes some states
◮ These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!

7 Schemmel et. al.

Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further
◮ Happens all the time in parallel programs
◮ E.g., consider two threads atomically incrementing a counter

• We detect such cutoff events by hashing all memory

• Also, our partial-order-reduction algorithm re-executes some states
◮ These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!

7 Schemmel et. al.

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs

Support for most POSIX threading primitives, including condition variables

Relies on recognizing data races as bugs (and does so)

Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction

data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs
• Support for most POSIX threading primitives, including condition variables

Relies on recognizing data races as bugs (and does so)

Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction

data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs
• Support for most POSIX threading primitives, including condition variables
• Relies on recognizing data races as bugs (and does so)

Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction

data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs
• Support for most POSIX threading primitives, including condition variables
• Relies on recognizing data races as bugs (and does so)
• Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction

data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs
• Support for most POSIX threading primitives, including condition variables
• Relies on recognizing data races as bugs (and does so)
• Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction

data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs
• Support for most POSIX threading primitives, including condition variables
• Relies on recognizing data races as bugs (and does so)
• Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction
data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs
• Support for most POSIX threading primitives, including condition variables
• Relies on recognizing data races as bugs (and does so)
• Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction
data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs
• Support for most POSIX threading primitives, including condition variables
• Relies on recognizing data races as bugs (and does so)
• Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction
data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se
Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al.

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Acknowledgements

This research is supported by the European
Research Council (ERC) under the European
Union’s Horizon 2020 Research and
Innovation Programme (grant agreement
№. 647295 (SYMBIOSYS)).

9 Schemmel et. al.

	Conclusion
	Supplementary

