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Introduction

• As core counts rise, multi-threaded programs become more and more prevalent

We believe that Symbolic Execution can help test those programs [1]

Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.



Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.



Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.



Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks

2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.



Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher

3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.



Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.



Introduction

• As core counts rise, multi-threaded programs become more and more prevalent
• We believe that Symbolic Execution can help test those programs [1]

• Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

• Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al.



Adding Basic Thread-Support to KLEE

• KLEE states are easily extended to track multiple stacks and instruction pointers

Executing every instruction interleaving causes immediate state explosion!

# of possible paths #threads#instructions per thread

Tiny example:
Executing any one instruction turns one state intp #threads states

A posteriori approaches (searchers, state pruning) alone are insufficient!
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Coarse Thread-Scheduling

Thread 1 Thread 2

; a += 1
%1 = load i32, i32* @a, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @a, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

; b += 1
%1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1
store i32 %2, i32* @b, align 4

; x += 1
%3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, 1
store i32 %4, i32* @x, align 4

Data races are undefined behavior!
[C11 §5.1.2.4/25] [C18 §5.1.2.4/35]
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Data Race Detection

• Our KLEE fork detects data races as a new bug category

For each byte, we record which thread read/wrote it last
Efficient if a memory object is used by one thread exclusively

Most memory objects are not shared between threads
Symbolic accesses to shared memory objects may require SMT solving
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Cutoff Events and Re-executions

• If two paths yield the exact same state, only one needs to be pursued further

Happens all the time in parallel programs
E.g., consider two threads atomically incrementing a counter

We detect such cutoff events by hashing all memory

Also, our partial-order-reduction algorithm re-executes some states

These re-executions must yield the exact same state as the original execution

A deterministic engine is key for our approach!
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Conclusion

• Our KLEE fork can symbolically execute multi-threaded programs

Support for most POSIX threading primitives, including condition variables

Relies on recognizing data races as bugs (and does so)

Requires deterministic re-execution

+Symbolic Execution Partial-Order Reduction

data non-determinism thread non-determinism

Check out our tool: https://github.com/por-se/por-se

Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Büning, C. Rodríguez, D. Laprell, K. Wehrle. CAV 2020.
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