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Introduction

e As core counts rise, multi-threaded programs become more and more prevalent
¢ We believe that Symbolic Execution can help test those programs [1]

e Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

e Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.
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Adding Basic Thread-Support to KLEE

e KLEE states are easily extended to track multiple stacks and instruction pointers

e Executing every instruction interleaving causes immediate state explosion!

» # of possible paths = #threads*instructions per thread
> Tiny example: 820 = 260
> Executing any one instruction turns one state intp #threads states

¢ A posteriori approaches (searchers, state pruning) alone are insufficient!
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Coarse Thread-Scheduling

pa +=1 b +=1
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Coarse Thread-Scheduling

;a+=1 i b+=1

%1 = load i32, i32* @a, align 4 %1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, %2 = add nsw i32 %1,

store i32 %2, i32* @a, align 4 store i32 %2, i32* @b, align 4
;X +=1 X +=1

’

%3 = load i32, i32* @x, align 4 %3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, ><°/o4 = add nsw 132 %3,

store 132 %4, 1i32* @x, align 4 store 132 %4, i32* @x, align 4

Data races are undefined behavior!
[C11 §5.1.2.4/25] [C18 §5.1.2.4/35]
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Data Race Detection

e Our KLEE fork detects data races as a new bug category

e For each byte, we record which thread read/wrote it last
e Efficient if a memory object is used by one thread exclusively

» Most memory objects are not shared between threads
» Symbolic accesses to shared memory objects may require SMT solving
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Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further

» Happens all the time in parallel programs
» E.g., consider two threads atomically incrementing a counter

e We detect such cutoff events by hashing all memory

e Also, our partial-order-reduction algorithm re-executes some states
> These re-executions must yield the exact same state as the original execution

[ A deterministic engine is key for our approach! ]
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Conclusion

Our KLEE fork can symbolically execute multi-threaded programs

Support for most POSIX threading primitives, including condition variables
Relies on recognizing data races as bugs (and does so)
Requires deterministic re-execution

Symbolic Execution Partial-Order Reduction
data non-determinism + thread non-determinism

Check out our tool: ? https://github.com/por-se/por-se @
Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688
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