The Long Road towards
Testing Multi-Threaded Programs

with KLEE

Daniel Schemmel, Julian Blining, David Laprell, Klaus Wehrle
RWTH Aachen University

https://comsys.rwth-aachen.de Zoomspace, 2021-06-11

| RWTHAACHEN
SYS UNIVERSITY

https://github.com/por-se

Introduction

e As core counts rise, multi-threaded programs become more and more prevalent

2 Schemmel et. al. UNIVEF%IIW

Introduction

e As core counts rise, multi-threaded programs become more and more prevalent
¢ We believe that Symbolic Execution can help test those programs [1]

[11 Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al. UNIVE%II%

Introduction

e As core counts rise, multi-threaded programs become more and more prevalent
¢ We believe that Symbolic Execution can help test those programs [1]

e Adding support for multi-threaded programs to KLEE initially sounds simple:

[11 Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al. UNIVEF?EI%

Introduction

e As core counts rise, multi-threaded programs become more and more prevalent
¢ We believe that Symbolic Execution can help test those programs [1]

e Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al. |

Introduction

e As core counts rise, multi-threaded programs become more and more prevalent
¢ We believe that Symbolic Execution can help test those programs [1]

e Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al. |

Introduction

e As core counts rise, multi-threaded programs become more and more prevalent
¢ We believe that Symbolic Execution can help test those programs [1]

e Adding support for multi-threaded programs to KLEE initially sounds simple:
1. Extend KLEE states to manage multiple thread stacks

2. Add a concurrency-aware searcher
3. Model the pthread API

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al. ’

Introduction

e As core counts rise, multi-threaded programs become more and more prevalent
¢ We believe that Symbolic Execution can help test those programs [1]

e Adding support for multi-threaded programs to KLEE initially sounds simple:

1. Extend KLEE states to manage multiple thread stacks
2. Add a concurrency-aware searcher
3. Model the pthread API

e Where is the catch?

[1] Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.

2 Schemmel et. al. ’ RWTH

SYS

Adding Basic Thread-Support to KLEE

e KLEE states are easily extended to track multiple stacks and instruction pointers

3 Schemmel et. al. UNIVEF%IIW

Adding Basic Thread-Support to KLEE

e KLEE states are easily extended to track multiple stacks and instruction pointers
e Executing every instruction interleaving causes immediate state explosion!

3 Schemmel et. al. UNIVEF%IIW

Adding Basic Thread-Support to KLEE

e KLEE states are easily extended to track multiple stacks and instruction pointers

e Executing every instruction interleaving causes immediate state explosion!
> # of possible paths = #threads®nstructions per thread

3 Schemmel et. al. UNIVEF%-II%

Adding Basic Thread-Support to KLEE

e KLEE states are easily extended to track multiple stacks and instruction pointers

e Executing every instruction interleaving causes immediate state explosion!

> # of possible paths = #threads®nstructions per thread
> Tiny example: 820 = 260

3 Schemmel et. al. UNIVEF%-II%

Adding Basic Thread-Support to KLEE

e KLEE states are easily extended to track multiple stacks and instruction pointers

e Executing every instruction interleaving causes immediate state explosion!
> # of possible paths = #threads®nstructions per thread
> Tiny example: 820 = 260
> Executing any one instruction turns one state intp #threads states

3 Schemmel et. al. UNIVEF?EI%

Adding Basic Thread-Support to KLEE

e KLEE states are easily extended to track multiple stacks and instruction pointers

e Executing every instruction interleaving causes immediate state explosion!

» # of possible paths = #threads*instructions per thread
> Tiny example: 820 = 260
> Executing any one instruction turns one state intp #threads states

¢ A posteriori approaches (searchers, state pruning) alone are insufficient!

3 Schemmel et. al. UNIVEF?EI%

Coarse Thread-Scheduling

pa +=1 b +=1

%1 = load i32, i32* @a, align 4 %1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, 1 %2 = add nsw i32 %1, 1

store i32 %2, i32* @a, align 4 store i32 %2, i32* @b, align 4

4 Schemmel et. al. UNIVEF?EI%

Coarse Thread-Scheduling

;a+=1

%1 = load 132, i32* @a, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @a, align 4

;X =1

%3 = load i32, i32* @x, align 4
%4 = add nsw 132 %3,

store i32 %4, i32* @x, align 4

;b +=1

%1 = load 132, i32* @b, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @b, align 4

;X =1

%3 = load 132, i32* @x, align 4
%4 = add nsw 132 %3,

store 132 %4, i32* @x, align 4

Schemmel et. al.

RWTHAACHEN
SYS UNIVERSITY

Coarse Thread-Scheduling

pa +=1 b +=1

%1 = load i32, i32* @a, align 4 %1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, %2 = add nsw i32 %1,

store i32 %2, i32* @a, align 4 store i32 %2, i32* @b, align 4
;X +=1 ;X +=1

%3 = load i32, i32* @x, align 4 %3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, ><°/o4 = add nsw 132 %3,

store 132 %4, 1i32* @x, align 4 store 132 %4, i32* @x, align 4

RWTHAACHEN
SYS

4 Schemmel et. al. UNIVERSITY

Coarse Thread-Scheduling

;a+=1 i b+=1

%1 = load i32, i32* @a, align 4 %1 = load i32, i32* @b, align 4
%2 = add nsw i32 %1, %2 = add nsw i32 %1,

store i32 %2, i32* @a, align 4 store i32 %2, i32* @b, align 4
;X +=1 X +=1

’

%3 = load i32, i32* @x, align 4 %3 = load i32, i32* @x, align 4
%4 = add nsw i32 %3, ><°/o4 = add nsw 132 %3,

store 132 %4, 1i32* @x, align 4 store 132 %4, i32* @x, align 4

Data races are undefined behavior!
[C11 §5.1.2.4/25] [C18 §5.1.2.4/35]

4 Schemmel et. al. |

Data Race Detection

e Our KLEE fork detects data races as a new bug category

5 Schemmel et. al. UNIVEF%IIW

Data Race Detection

e Our KLEE fork detects data races as a new bug category

e For each byte, we record which thread read/wrote it last

5 Schemmel et. al. UNIVEF%IIW

Data Race Detection

e Our KLEE fork detects data races as a new bug category

e For each byte, we record which thread read/wrote it last
e Efficient if a memory object is used by one thread exclusively

5 Schemmel et. al. UNIVEF%-II%

Data Race Detection

e Our KLEE fork detects data races as a new bug category

e For each byte, we record which thread read/wrote it last
e Efficient if a memory object is used by one thread exclusively
» Most memory objects are not shared between threads

5 Schemmel et. al. UNIVE%II%

Data Race Detection

e Our KLEE fork detects data races as a new bug category

e For each byte, we record which thread read/wrote it last
e Efficient if a memory object is used by one thread exclusively

» Most memory objects are not shared between threads
» Symbolic accesses to shared memory objects may require SMT solving

5 Schemmel et. al. UNIVEF?EI%

Coarse Thread-Scheduling

;a+=1

%1 = load 132, i32* @a, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @a, align 4

;o x +=1

%3 = load i32, i32* @x, align 4
%4 = add nsw 132 %3,

store i32 %4, i32* @x, align 4

;b +=1

%1 = load 132, i32* @b, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @b, align 4

;X +=1

%3 = load 132, i32* @x, align 4
%4 = add nsw i32 %3,

store 132 %4, i32* @x, align 4

Schemmel et. al.

RWTHAACHEN
SYS UNIVERSITY

Coarse Thread-Scheduling

;a+=1

%1 = load 132, i32* @a, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @a, align 4

call void @lock()

;X +=1

%3 = load 132, i32* @x, align 4
%4 = add nsw i32 %3,

store i32 %4, i32* @x, align 4
call void @unlock()

;b +=1

%1 = load 132, i32* @b, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @b, align 4

call void @lock()

;X +=1

%3 = load 132, i32* @x, align 4
%4 = add nsw i32 %3,

store 132 %4, i32* @x, align 4
call void @unlock()

Schemmel et. al.

|RWI'H

SYS

Coarse Thread-Scheduling

;a+=1

%1 = load i32, i32* @a, align 4
%2 = add nsw 132 %1,

store i32 %2, i32* @a, align 4

call void @lock()

;o X +=1

%3 = load 132, i32* @x, align 4
%4 = add nsw i32 %3,

store i32 %4, i32* @x, align 4
call void @unlock()

;b +=1

%1 = load 132, i32* @b, align 4
%2 = add nsw 132 %1,

store i32 %2, i32* @b, align 4

call void @lock()

;X +=1

%3 = load 132, i32* @x, align 4
%4 = add nsw i32 %3,

store i32 %4, i32* @x, align 4
call void @unlock()

Schemmel et. al.

’RWTI'I

SYS

Coarse Thread-Scheduling

;a+=1

%1 = load 132, i32* @a, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @a, align 4

call void @lock()

;X +=1

%3 = load 132, i32* @x, align 4
%4 = add nsw i32 %3,

store i32 %4, i32* @x, align 4
call void @unlock()

;b +=1

%1 = load 132, i32* @b, align 4
%2 = add nsw i32 %1,

store i32 %2, i32* @b, align 4

call void @lock()

;X +=1

%3 = load 132, i32* @x, align 4
%4 = add nsw i32 %3,

store 132 %4, i32* @x, align 4
call void @unlock()

Schemmel et. al.

|RWI'H

SYS

Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further

7 Schemmel et. al. UNIVEF%IIW

Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further
» Happens all the time in parallel programs

7 Schemmel et. al. UNIVEF%IIW

Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further

» Happens all the time in parallel programs
» E.g., consider two threads atomically incrementing a counter

7 Schemmel et. al. UNIVEF%IIw

Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further

» Happens all the time in parallel programs
» E.g., consider two threads atomically incrementing a counter

e We detect such cutoff events by hashing all memory

7 Schemmel et. al. UNIVEF%II%

Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further

» Happens all the time in parallel programs
» E.g., consider two threads atomically incrementing a counter

e We detect such cutoff events by hashing all memory

e Also, our partial-order-reduction algorithm re-executes some states

7 Schemmel et. al. UNIVEF?EI%

Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further

» Happens all the time in parallel programs
» E.g., consider two threads atomically incrementing a counter

e We detect such cutoff events by hashing all memory

e Also, our partial-order-reduction algorithm re-executes some states
> These re-executions must yield the exact same state as the original execution

7 Schemmel et. al. UNIVEF?EI%

Cutoff Events and Re-executions

e |f two paths yield the exact same state, only one needs to be pursued further

» Happens all the time in parallel programs
» E.g., consider two threads atomically incrementing a counter

e We detect such cutoff events by hashing all memory

e Also, our partial-order-reduction algorithm re-executes some states
> These re-executions must yield the exact same state as the original execution

[A deterministic engine is key for our approach!]

7 Schemmel et. al. UNIVEF%II%Q

Conclusion

e Our KLEE fork can symbolically execute multi-threaded programs

8 Schemmel et. al. UNIVEF%IIW

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

e Our KLEE fork can symbolically execute multi-threaded programs

e Support for most POSIX threading primitives, including condition variables

8 Schemmel et. al. UNIVEF%IIw

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

e Our KLEE fork can symbolically execute multi-threaded programs

e Support for most POSIX threading primitives, including condition variables
¢ Relies on recognizing data races as bugs (and does so)

8 Schemmel et. al. UNIVE%II%

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

e Our KLEE fork can symbolically execute multi-threaded programs

e Support for most POSIX threading primitives, including condition variables
¢ Relies on recognizing data races as bugs (and does so)

® Requires deterministic re-execution

8 Schemmel et. al. UNIVEF?EI%

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

e Our KLEE fork can symbolically execute multi-threaded programs

e Support for most POSIX threading primitives, including condition variables
¢ Relies on recognizing data races as bugs (and does so)

® Requires deterministic re-execution

-+

Symbolic Execution] [PartiaI-Order Reduction

8 Schemmel et. al. | RWTH

SYS

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

Our KLEE fork can symbolically execute multi-threaded programs

Support for most POSIX threading primitives, including condition variables
Relies on recognizing data races as bugs (and does so)
Requires deterministic re-execution

Symbolic Execution Partial-Order Reduction
data non-determinism + thread non-determinism

8 Schemmel et. al. ’ RWTH

SYS

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

e Our KLEE fork can symbolically execute multi-threaded programs

e Support for most POSIX threading primitives, including condition variables
¢ Relies on recognizing data races as bugs (and does so)

® Requires deterministic re-execution

Symbolic Execution Partial-Order Reduction
data non-determinism + thread non-determinism

Check out our tool: ? https://github.com/por-se/por-se @

8 Schemmel et. al. l RWTH

SYS

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Conclusion

Our KLEE fork can symbolically execute multi-threaded programs

Support for most POSIX threading primitives, including condition variables
Relies on recognizing data races as bugs (and does so)
Requires deterministic re-execution

Symbolic Execution Partial-Order Reduction
data non-determinism + thread non-determinism

Check out our tool: ? https://github.com/por-se/por-se @
Read the extended version of our CAV’20 paper [1]: https://arxiv.org/abs/2005.06688

[11 Symbolic Partial-Order Execution for Testing Multi-Threaded Programs.
D. Schemmel, J. Buning, C. Rodriguez, D. Laprell, K. Wehrle. CAV 2020.

8 Schemmel et. al. | RWTH

SYS

https://github.com/por-se/por-se
https://arxiv.org/abs/2005.06688

Acknowledgements

This research is supported by the European
Research Council (ERC) under the European
Union’s Horizon 2020 Research and
Innovation Programme (grant agreement

Ne. 647295 (SYMBIOSYS)).

European Research Council

Established by the European Commission

9 Schemmel et. al.

’RWTH

SYS

	Conclusion
	Supplementary

