
Laurent Simon, Read Sprabery, Jonathan Metzman
@FuzzBench Team
June 10, 2021

Klee in FuzzBench

Proprietary + Confidential

What's FuzzBench

GitHub: https://github.com/google/fuzzbench

https://github.com/google/fuzzbench

Open Source Security

Need to integrate new fuzzing techniques

● Lots of research

● Expensive to

○ Re-implement

○ Port proof-of-concept

○ Deploy at scale (e.g. OSS-Fuzz, free service for open

source fuzzing)

● Need prioritization

GitHub: https://github.com/google/fuzzbench

 https://github.com/google/oss-fuzz

https://github.com/google/fuzzbench
https://github.com/google/oss-fuzz

Open Source Security

No standard evaluation framework

● Experimental design

○ Number of trials, time of trials

○ Program selection

○ Fuzzer configurations (seeds, dictionaries, flags, etc)

● Result reporting

○ Statistical significance

○ Plotting library

○ Coverage (blocks, lines, edges, etc)

● Scaling: native cloud support

GitHub: https://github.com/google/fuzzbench

https://github.com/google/fuzzbench

Open Source Security

Open source fuzzing benchmarking platform

● FuzzBench

○ ~20 real-world programs from OSS-Fuzz

○ Runs

○ Extract coverage

○ De-duplicate bugs

○ Plot results

○ Report statistical significance

● Complements micro-benchmarks

○ Competition on Software Testing1

○ coreutils

1 GitHub: https://test-comp.sosy-lab.org/2021/

https://test-comp.sosy-lab.org/2021/

Proprietary + Confidential

Integration Klee with FuzzBench

Open Source Security

Benchmarks

● <10 benchmarks out of ~20 available in Fuzzbench

● ~400 LoC of Python code

● Few weeks on and off

● Patched Klee to generate binary files instead of .ktest files

○ Can be replayed to extract coverage information

Open Source Security

Unsupported instructions

● Vectorized, floating points

○ Vorbis:

■ LLVM ERROR: Code generator does not support

intrinsic function 'llvm.rint.f64'!

○ Libpng gives error

■ silently concretizing (reason: floating point)

● Longjump

○ Libpng

■ KLEE: ERROR: ... /illegal.c:40: longjmp unsupported

● Assembly instructions

Open Source Security

Unsupported libraries and dependencies

● Pthread support

○ KLEE: WARNING: undefined reference to function:

pthread_create

● System-level linking

○ Many programs link against zlib, openssl, etc

■ Need to recursively compile these or tell KLEE to

ignore them

■ Often these are in parts of code we don't need

during fuzzing anyway

Open Source Security

OOM'ing

● Klee cannot reliably respect the memory usage specified via

-max-memory option

Proprietary + Confidential

Experiments & Results

Open Source Security

Setup 1: no seeds

● Afl++ vs Klee (-max-memory=3GB)

● No seed corpus

● No dictionary

● 10 runs

● 12 hrs

GitHub: https://github.com/AFLplusplus/AFLplusplus

https://github.com/AFLplusplus/AFLplusplus

Open Source Security

Open Source Security

Open Source Security

Open Source Security

Open Source Security

Setup 1: takeaways

● General trend

○ AFL++ visits more code than Klee, 2x to 3x

○ AFL++ visits all the code that Klee visits

● On woff2 target, Klee visits ~1000 LoC

○ AFL++ is stuck at ~80 LoC

● Klee is more consistent than AFL++

○ Less variance

Open Source Security

Setup 2: with seeds

● Afl++ vs Klee (-max-memory=3GB)

● Seed corpus (not saturated, from OSS-Fuzz)

● No dictionary

● 10 runs

● 12 hrs

Open Source Security

Open Source Security

Setup 2: takeaways

● AFL++ makes good use of seeds

● Seeds have little impact on Klee's performance

Open Source Security

Open Source Security

Proprietary + Confidential

Going forward

Open Source Security

Blockers for adoption of symex in industry

● Engineering blockers

○ Run klee at scale to find bugs and for research evaluation

○ Instruction support, compilation toolchain, asm, etc

● Fuzzers 's ease of use

● Coverage

○ State explosion

○ Klee does not visit new 'code' after a few hours

Open Source Security

Sweet spot for adoption of symex in industry

● OSS-Fuzz

○ Run 24/7 for 365 days/year

○ Coverage/bugs improvement marginal after 24hrs

● Goal:

○ Target smaller, unexplored code by fuzzers

■ Reduce state explosion

■ Take advantage of SMT solvers

○ Examples:

■ Concolic execution, e.g. follow a path and start

exploring symbolically

■ MoKlee https://srg.doc.ic.ac.uk/projects/moklee/

https://srg.doc.ic.ac.uk/projects/moklee/

Open Source Security

How can Google help?

● Fuzzbench, OSS-Fuzz are frees service you can use

● We have funding for

○ Research grants

○ Integration of symex engines/fuzzers into FuzzBench for

evaluation

○ 5-50K or higher based on projects

● Tell us how we can help

Thank You

