
Fangke Ye, Jisheng Zhao, Vivek Sarkar

KLEE Workshop 2021

Detecting MPI Usage Anomalies via

Partial Program Symbolic Execution

• Message Passing Interface (MPI) is a widely-used programming
model for distributed-memory parallelism

• MPI programming is error-prone

• MPI APIs are not expressed as structured program constructs
• Easy to omit synchronizations for nonblocking communication API calls

• Pointer aliasing and arithmetic on data buffers for communication for MPI
applications written in C/C++

• General difficulties in parallel programming

• Need tools to help debugging
2

Background

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
…
if (rank == 0) {

…
MPI_Send(sendbuf, 10, MPI_INT, 1, …);
…

} else { // rank == 1
…
MPI_Recv(recvbuf, 10, MPI_INT, 1, …);
…

}

• True bugs or uncommon coding
styles that may lead to bugs

• Anomalies we target
1. Buffer Type Mismatch

2. Buffer Data Race

3. Request Overwriting

4. Unmatched Wait or Test

5. Unmatched Point-to-Point (P2P) Call

3

MPI Usage Anomalies

Rank 0 sends to rank 1

Rank 1 receives from

rank 1

(should be rank 0 instead)

5. Unmatched P2P call

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
…
if (rank == 0) {

…
MPI_Send(sendbuf, 10, MPI_INT, 1, …);
…

} else { // rank == 1
…
MPI_Recv(recvbuf, 10, MPI_INT, 1, …);
…

}

• True bugs or uncommon coding
styles that may lead to bugs

• Anomalies we target
1. Buffer Type Mismatch

2. Buffer Data Race

3. Request Overwriting

4. Unmatched Wait or Test

5. Unmatched Point-to-Point (P2P) Call

4

MPI Usage Anomalies

Rank 0 sends to rank 1

Rank 1 receives from

rank 1

(should be rank 0 instead)

5. Unmatched P2P call

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
…
if (rank == 0) {

…
MPI_Send(sendbuf, 10, MPI_INT, 1, …);
…

} else { // rank == 1
…
MPI_Recv(recvbuf, 10, MPI_INT, 1, …);
…

}

• True bugs or uncommon coding
styles that may lead to bugs

• Anomalies we target
1. Buffer Type Mismatch

2. Buffer Data Race

3. Request Overwriting

4. Unmatched Wait or Test

5. Unmatched Point-to-Point (P2P) Call

5

MPI Usage Anomalies

Rank 0 sends to rank 1

Rank 1 receives from

rank 1

(should be rank 0 instead)

5. Unmatched P2P call

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
…
if (rank == 0) {

…
MPI_Send(sendbuf, 10, MPI_INT, 1, …);
…

} else { // rank == 1
…
MPI_Recv(recvbuf, 10, MPI_INT, 1, …);
…

}

• True bugs or uncommon coding
styles that may lead to bugs

• Anomalies we target
1. Buffer Type Mismatch

2. Buffer Data Race

3. Request Overwriting

4. Unmatched Wait or Test

5. Unmatched Point-to-Point (P2P) Call

6

MPI Usage Anomalies

Rank 0 sends to rank 1

Rank 1 receives from

rank 1

(should be rank 0 instead)

5. Unmatched P2P call

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
…
if (rank == 0) {

…
MPI_Send(sendbuf, 10, MPI_INT, 1, …);
…

} else { // rank == 1
…
MPI_Recv(recvbuf, 10, MPI_INT, 1, …);
…

}

• True bugs or uncommon coding
styles that may lead to bugs

• Anomalies we target
1. Buffer Type Mismatch

2. Buffer Data Race

3. Request Overwriting

4. Unmatched Wait or Test

5. Unmatched Point-to-Point (P2P) Call

7

MPI Usage Anomalies

Branch not taken:
req[1] not used

Wait for req[0]
and req[1]

Rank 0 sends to rank 1

Rank 1 receives from

rank 1

(should be rank 0 instead)

5. Unmatched P2P call

int rank;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
…
if (rank == 0) {

…
MPI_Send(sendbuf, 10, MPI_INT, 1, …);
…

} else { // rank == 1
…
MPI_Recv(recvbuf, 10, MPI_INT, 1, …);
…

}

• True bugs or uncommon coding
styles that may lead to bugs

• Anomalies we target
1. Buffer Type Mismatch

2. Buffer Data Race

3. Request Overwriting

4. Unmatched Wait or Test

5. Unmatched Point-to-Point (P2P) Call

8

MPI Usage Anomalies

Rank 0 sends to rank 1

Rank 1 receives from

rank 1

(should be rank 0 instead)

5. Unmatched P2P call

• Advantages
• Precise reasoning of pointers in C/C++

• Potential better coverage than debugging methods relying on a fixed set of
concrete input

• Better time and space efficiency than dynamically debugging for large-scale
parallel programs

• Challenges
• Modeling MPI API behaviors

• Scalability

9

Symbolic Execution for MPI Debugging

10

Our Approach

C/C++ MPI Application
Source Code

LLVM IR

LLVM IR + Static
Program Information

Clang

Static Analysis
Passes

MPI Anomaly
Detector

KLEE

Intercept

Compilation

Partial Program
Symbolic Execution

• Use a symbolic rank

• Fork the execution when rank is tested
• Add a constraint on rank to the path condition

• Fill receive buffers with unconstrained
symbolic values

11

MPI Modeling – Ranks (Process Identifiers)

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

MPI_Isend(sendbuf, 10, MPI_INT, 1, 0,
MPI_COMM_WORLD, &req);

MPI_Test(&req, &flag, MPI_STATUS_IGNORE);
if (!flag)

MPI_Wait(&req, MPI_STATUS_IGNORE);
}

rank=0
[<Isend, req, sendbuf[40]>]

rank=0∧flag=0
[<Isend, req, sendbuf[40]>]

rank=?
[]

rank=0
[]

rank≠0
[]

rank=0∧flag≠0
[]

rank=0∧flag=0
[]

• Record ongoing nonblocking operations in the state

• Intercept MPI calls to update the records

12

MPI Modeling – Nonblocking Operations

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) {

MPI_Isend(sendbuf, 10, MPI_INT, 1, 0,
MPI_COMM_WORLD, &req);

MPI_Test(&req, &flag, MPI_STATUS_IGNORE);
if (!flag)

MPI_Wait(&req, MPI_STATUS_IGNORE);
}

rank=0
[<Isend, req, sendbuf[40]>]

rank=0∧flag=0
[<Isend, req, sendbuf[40]>]

rank=?
[]

rank=0
[]

rank≠0
[]

rank=0∧flag≠0
[]

rank=0∧flag=0
[]

• For anomalies related to nonblocking operations
• Including Buffer Data Race, Request Overwriting, Unmatched Wait or Test

• Use nonblocking operation records stored in the execution state
• Check if the anomaly condition is satisfiable given the path condition

13

Anomaly Detection

MPI_Irecv(recvbuf, 10, MPI_INT, x,
101, MPI_COMM_WORLD, &req[0]);

recvbuf[i] = 0;

Path condition: 𝑝𝑐
[<Irecv, &req[0], recvbuf[40]>]

If 𝑝𝑐 ∧ 𝑟𝑒𝑐𝑣𝑏𝑢𝑓 ≤ &𝑟𝑒𝑐𝑣𝑏𝑢𝑓 𝑖 < 𝑐ℎ𝑎𝑟 ∗ 𝑟𝑒𝑐𝑣𝑏𝑢𝑓 + 40
is satisfiable

• For other anomalies
• Including Buffer Type Mismatch, Unmatched P2P Call

• Use pre-computed static information to detect them
• A map from MPI_Datatype to LLVM types

• All P2P calls that are control dependent on each rank-related branch

14

Anomaly Detection

uint16_t recvbuf[100];
MPI_Irecv(recvbuf, 10, MPI_LONG, x,

101, MPI_COMM_WORLD, &req[0]);

int16_t Int16Ty

MPI_LONG Int32Ty

• Observation

• Usually, a large portion of code in an MPI application is not relevant to
communication

• Set limitations on execution

• Max number of iterations per loop

• Max fork depth

• Partial program symbolic execution

• Start new executions at user-specified locations

• Our implementation: select any function as the entrance of an execution

15

Improving the Scalability of Symbolic Execution

• The memory state is unknown before entering
the entry function

• Lazy initialization 1, 2

• Allocate memory at dereferences

• Fork the execution for multiple possible memory
states

• Eliminate some impossible states using pre-computed
whole-program alias analysis results

16

Memory State Initialization

int a[10];

void f(int *p, int i) {
p[i] = 0;

}

void g() {
int b[10];
f(b, 0);

}

void h() {
f(a, 0);

}

Entry Function

1 Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized Symbolic Execution for Model Checking and Testing. TACAS ’03.
2 David A. Ramos and Dawson Engler. Under-Constrained Symbolic Execution: Correctness Checking for Real Code. USENIX Security ’15.

• Not every pointer dereference needs
lazy initialization

• *p should not trigger lazy initialization

• Use shadow memory to track whether
a symbolic pointer value has already
been initialized

17

Tracking Initialization States for Symbolic Pointers with
Shadow Memory

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

18

Lazy Initialization with Shadow Memory

Application Memory
& Local Variables

Shadow Memory Metadata

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

Code

Each pointer-sized memory
block has a corresponding
shadow memory slot.

Each local variable has a
reference to a metadata cell.

Each shadow memory slot
stores a reference to a
metadata cell.

Each metadata cell stores a
boolean value that indicates
whether lazy allocation is
needed.

Lazy Initialization with Shadow Memory

19

m 1

Application Memory
& Local Variables

Shadow Memory Metadata

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

Code

Lazy Initialization with Shadow Memory

20

m 0

1 1 1

Application Memory
& Local Variables

Shadow Memory Metadata

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

Code

Allocate

Unset

Lazy Initialization with Shadow Memory

21

m p 0

1 1 1

Application Memory
& Local Variables

Shadow Memory Metadata

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

Code

Load

Lazy Initialization with Shadow Memory

22

m p q 0

1 1 1

Application Memory
& Local Variables

Shadow Memory Metadata

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

Code

Load

Lazy Initialization with Shadow Memory

23

m p q 0

1 1 1 1 1

Application Memory
& Local Variables

Shadow Memory Metadata

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

Code

0

Allocate

Unset

Lazy Initialization with Shadow Memory

24

m p q 0

0 1 1 1 1 1

Application Memory
& Local Variables

Shadow Memory Metadata

int f(int **m) {
int *p = m[0];
int *q = m[0];
*q = 0;
return *p;

}

Code

No need
to allocate

• Benchmarks
• 2 real-world applications: AMG2013, Athena

• 2 Benchmarks from the NAS Parallel Benchmark Suite:
NPB.IS, NPB.DT

• A library implemented with MPI: OpenFFT

• A benchmark application used in previous work: Sort 1

• Comparison
• Our approach: partial program symbolic execution (PSE)

• Static analysis tool: MPI-Checker 2

• Dynamic analysis tool: MUST 3

25

Evaluation

Benchmark Lines of Code

AMG2013 74,901

Athena 63,012

NPB.IS 6,498

NPB.DT 711

OpenFFT 892

Sort 127

1 Zhezhe Chen, Xinyu Li, Jau-Yuan Chen, Hua Zhong, and Feng Qin. SyncChecker: Detecting Synchronization Errors Between MPI Applications and

Libraries. IPDPS ’12.
2 Alexander Droste, Michael Kuhn, and Thomas Ludwig. MPI-Checker: Static Analysis for MPI. LLVM ’15.
3 Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller. MPI Runtime Error Detection with MUST: Advances in

Deadlock Detection. SC ’12.

26

Evaluation – Effectiveness

Benchmark Anomaly Type
Number of
Anomalies

Number of Anomalies Reported

PSE MPI-Checker MUST

AMG2013
Resuest Overwriting 0 0 2 (FP) 0

Unmatched Wait 0 0 1 (FP) 0

Athena
Buffer Data Race 4 4 (TP) N/A N/A

Request Overwriting 8 8 (TP) 0 8 (TP)

Sort Buffer Data Race 1 1 (TP) N/A 1 (TP)

TP = True Positive

FP = False Positive

N/A: Not Supported

27

Evaluation – Performance

Benchmark

Time (s) Memory Usage (MB)

PSE
MPI-

Checker
MUST PSE

MPI-

Checker
MUST

AMG2013 28.57* 96.70 8.54 220 418 677

Athena 1960.14* 27.13 119.19 277 333 700

OpenFFT 75.21* 4.76 N/A 74 312 N/A

NPB.IS 206.21** 1.00 9.15 1,926 85 654

NPB.DT 9.54** 1.60 8.49 1,316 128 714

Sort 0.11** 0.39 6.38 27 65 682

* Starting from a non-main function.
** Starting from the main function with concrete input and symbolic ranks.

Source code available at

https://github.com/fkye/PSE-MPI
28

Conclusion

C/C++ MPI Application
Source Code

LLVM IR

LLVM IR + Static
Program Information

Clang

Static Analysis
Passes

MPI Anomaly
Detector

KLEE

Intercept

Compilation

Partial Program
Symbolic Execution

https://github.com/fkye/PSE-MPI

