Detecting MPI Usage Anomalies via
Partial Program Symbolic Execution
Fangke Ye, Jisheng Zhao, Vivek Sarkar 7

Georgia &

Tech

/

\\\“:\\ > > ¥ /////, o
AN\
\\7///

CREATING THE NEXT //#

(liiida

KLEE Workshop 2021

« Message Passing Interface (MPI) is a widely-used programming
model for distributed-memory parallelism

 MPI| programming is error-prone

 MPI APIs are not expressed as structured program constructs
« Easy to omit synchronizations for nonblocking communication API calls

 Pointer aliasing and arithmetic on data buffers for communication for MPI
applications written in C/C++

 General difficulties in parallel programming

* Need tools to help debugging

MPI Usage Anomalies

* True bugs or uncommon coding
styles that may lead to bugs

« Anomalies we target

1.

a s DN

Buffer Type Mismatch

Buffer Data Race

Request Overwriting

Unmatched Wait or Test

Unmatched Point-to-Point (P2P) Call

MPI_Request req(2];
uint32_t recvbuf[100], sendbuf[100];

1. datatype mismatch

MPI_Irecv(recvbuf, 10, MPI_LONG, x, 101, MPI_COMM_WORLD, &req|0]);

2. data race 3. request overwriting,

if (recvbuf[0] == x) { buffer overlap

MPI_lsend(sendbuf, 10, MPI_LONG, x+2, 103, MPI_COMM_WORLD, &req[1)));

MPI_Irecv(recvbuf, 10, MPI_LONG, x+1, 102, MPI_COMM_WORLD, &req|0]););

}

4. unmatched wait: req[1]

MPI_Waitall(2, req, ...);

int rank; Rank 0 sends to rank 1
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

"if (rank == 0) { 5. Unmatched P2P call

MPI_ Send(sendbuf, 10, MPI_INT, 1, ..); Rank 1 receives from

rank 1

} else { // rank == 1 (should be rank 0 instead)

MPI_Recv(recvbuf, 10, MPI_INT, 1, ..);
3

MPI Usage Anomalies

 True bugs or uncommon coding
styles that may lead to bugs

« Anomalies we target
1. Buffer Type Mismatch

~MPI_Reguest req[2];
IuWﬂSZJrecvbuﬂ100Lsendbuﬂ100k

I_MPI_Irecv(recvbuf, 10, MPI_LONG, x, 101, MPI_COMM_WORLD, &req|0]);

1. datatype mismatch

e

2. data race

3. request overwriting,
if (recvbuf[0] == x) {

buffer overlap

MPI_lsend(sendbuf, 10, MPI_LONG, x+2, 103, MPI_COMM_WORLD, &req[1)));

MPI_Irecv(recvbuf, 10, MPI_LONG, x+1, 102, MPI_COMM_WORLD, &req|0]););

}

4. unmatched wait: req[1]

MPI_Waitall(2, req, ...);

int rank; Rank 0 sends to rank 1
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

"if (rank == 0) { 5. Unmatched P2P call

MPI_ Send(sendbuf, 10, MPI_INT, 1, ..); Rank 1 receives from

rank 1

} else { // rank == 1 (should be rank 0 instead)

MPI_Recv(recvbuf, 10, MPI_INT, 1, ..);

MPI Usage Anomalies

 True bugs or uncommon coding
styles that may lead to bugs

« Anomalies we target

2. Buffer Data Race

MPI_Request req(2];
uint32_t recvbuf[100], sendbuf[100];

1. datatype mismatch

[MPI_Irecv(recvbuf, 10, MPI_LONG, x, 101, MPI_COMM_WORLD, &req[D])a
I / 2. data race -

~ 3. request overwriting,
|if recvbufl0] == x) { _ — ="

buffer overlap

MPI_lsend(sendbuf, 10, MPI_LONG, x+2, 103, MPI_COMM_WORLD, &req[1)));

MPI_Irecv(recvbuf, 10, MPI_LONG, x+1, 102, MPI_COMM_WORLD, &req|0]););

}

4. unmatched wait: req[1]

MPI_Waitall(2, req, ...);

int rank; Rank 0 sends to rank 1
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

"if (rank == 0) { 5. Unmatched P2P call

MPI_ Send(sendbuf, 10, MPI_INT, 1, ..); Rank 1 receives from

rank 1

} else { // rank == 1 (should be rank 0 instead)

MPI_Recv(recvbuf, 10, MPI_INT, 1, ..);

MPI Usage Anomalies

* True bugs or uncommon coding
styles that may lead to bugs

« Anomalies we target

3. Request Overwriting

MPI_Request req(2];
uint32_t recvbuf[100], sendbuf[100];

1. datatype mismatch

2. data race 3. request overwriting,

if (recvbuf[0] == x) { buffer overlap

!

— =
I MPI_Irecv(recvbuf, 10, MPI_IJONG, x+1, 102, MPI_COMM_WORLD | &req|0])));]

!
//4 unmatched wait: req[1]

MPI_Waitall(2, req, ...);

int rank; Rank 0 sends to rank 1
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

"if (rank == 0) { 5. Unmatched P2P call

MPI_ Send(sendbuf, 10, MPI_INT, 1, ..); Rank 1 receives from

rank 1

} else { // rank == 1 (should be rank 0 instead)

MPI_Recv(recvbuf, 10, MPI_INT, 1, ..);

MPI_Request req(2];

MPI U Sage Anomalies uint32_t recvbuf[100], sendbuf[100];

1. datatype mismatch

MPI_Irecv(recvbuf, 10, MPI_LONG, x, 101, MPI_COMM_WORLD, &req|0]);

. / 2. data race 3. request overwriting,
* True bugs or uncommon coding I.f(,ec\,buf[o] T T — — — _buffer overiap

styles that may lead to bugs

Branch not taken:

req[1] not used
. MPI_Irecv(recvbuf, 10, MPI_LONG, x+1, 102, MPI_COMM_WORLD, &req|0]););
« Anomalies we target }
4. unmatched wait: req[1]
Wait for req[0] I
and req[1] MP| Waitall(2, req, ...); |

int rank; Rank 0 sends to rank 1
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

4. Unmatched Wait or Test

"if (rank == 0) { 5. Unmatched P2P call

MPI_ Send(sendbuf, 10, MPI_INT, 1, ..); Rank 1 receives from

rank 1

} else { // rank == 1 (should be rank 0 instead)

MPI_Recv(recvbuf, 10, MPI_INT, 1, ..);

MPI Usage Anomalies

* True bugs or uncommon coding
styles that may lead to bugs

« Anomalies we target

5. Unmatched Point-to-Point (P2P) Call

r

MPI_Request req(2];
uint32_t recvbuf[100], sendbuf[100];

1. datatype mismatch

MPI_Irecv(recvbuf, 10, MPI_LONG, x, 101, MPI_COMM_WORLD, &req|0]);

/ 2. data race

|f (recvbuf[O] == X)

3. request overwriting,
buffer overlap

MPI_Isend(sendbuf, 10, MPI_LONG, x+2, 103, MPI_COMM_WORLD, &req[1]));

MPI_Irecv(recvbuf, 10, MPI_LONG, x+1, 102, MPI_COMM_WORLD, &req|0]););

}

4. unmatched wait: req[1]

MPI_Waitall(2, req, ...);

int rank; Rank 0 sends to rank 1

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
5. Unmatched P2P call

.Z:L.'F (rank == 0) {

MPI_ Send(sendbuf, 10, MPI_INT, 1, ..); Rank 1 receives from

rank 1

== 1 (should be rank 0 instead)

} ell.;e { // rank

MPI_Recv(recvbuf, 10, MPI_INT, 1, ..);

» Advantages
 Precise reasoning of pointers in C/C++

 Potential better coverage than debugging methods relying on a fixed set of
concrete input

 Better time and space efficiency than dynamically debugging for large-scale
parallel programs

 Challenges
« Modeling MPI API behaviors
 Scalability

Our Approach

Compilation

C/C++ MPI Application

Intercept
MPI Anomaly ¢ p>
Detector

Partial Program
Symbolic Execution

M LLVM IR +Static s Static Analysis
Program Information Passes

10

MPI Modeling — Ranks (Process Identifiers)

« Use a symbolic rank

* Fork the execution when rank is tested k=7
» Add a constraint on rank to the path condition) []
« Fill receive buffers with unconstrained rank=o/ \mgki .
symbolic values [(]] [(]]
MPI Comm_rank(MPI_COMM_WORLD, &rank); - y N
rank=0

if (rank == 0){
MPI Isend(sendbuf, 10, MPI INT, 1, O,
MPI_COMM_WORLD, &req); il R
MPI_Test(&req, &flag, MPI_STATUS_IGNORE); [rank=0Aflag=0) rank=0Aflag#0
if (!flag) [<Isend, req, sendbuf[40]>] [
MPI_Wait(&req, MPI_STATUS IGNORE); \ /

. [<Isend, req, sendbuf[40]>])

} A 4
[rank=0Aflag=0]
[]

11

MPI Modeling — Nonblocking Operations

» Record ongoing nonblocking operations in the state [anke?]
* Intercept MPI calls to update the records
rank=0 rankz0
[] []

MPI_Comm_rank (MPI_COMM_WORLD, &rank); - i N
if (rank == 0) { rank=0
[<Isend, req, sendbuf[40]>])

MPI Isend(sendbuf, 10, MPI INT, 1, O, L

MPI_COMM_WORLD, &req); - | R
MPI_Test(&req, &flag, MPI_STATUS IGNORE); (rank=0Aflag=0 h rank=dAf|ag¢0
if (!flag) . [<Isend, req, sendbuf[40]>] | [

—

MPI Wait(&req, MPI_STATUS_IGNORE); >

} »> A 4
[rank=0Aflag=0]
[]

12

* For anomalies related to nonblocking operations
* Including Buffer Data Race, Request Overwriting, Unmatched Wait or Test

» Use nonblocking operation records stored in the execution state
» Check if the anomaly condition is satisfiable given the path condition

MPI_Irecv(recvbuf, 10, MPI_INT, X, Path condition: pc
101, MPI_COMM_WORLD, &req[0]); [<Irecv, &req[0], recvbuf[40]>]
recvbuf[i] = ©;

If (pc Arecvbuf < &recvbuf|i] < (char *)recvbuf + 40) J

IS satisfiable

* For other anomalies
* Including Buffer Type Mismatch, Unmatched P2P Call

« Use pre-computed static information to detect them
« A map from MPI_Datatype to LLVM types
« All P2P calls that are control dependent on each rank-related branch

uintl6_t recvbuf[100]; nt16_t > Inti6Ty
MPI Irecv(recvbuf, 10, MPI_LONG, X,
101, MPI_COMM_WORLD, &req[@]);

MPI_LONG [Int32Ty

e Observation

 Usually, a large portion of code in an MPI application is not relevant to
communication

 Set limitations on execution
« Max number of iterations per loop
« Max fork depth

 Partial program symbolic execution
 Start new executions at user-specified locations
« Our implementation: select any function as the entrance of an execution

Memory State Initialization

Entry Function

int a[19]; ////
« The memory state is unknown before entering o L
void f(int *p, int i) {

the entry function S[i] - o
» Lazy initialization 1.2 J
 Allocate memory at dereferences void g()/{
» Fork the execution for multiple possible memory 2 DLl
(b, 0);
states }
 Eliminate some impossible states using pre-computed
whole-program alias analysis results void h() {
f(a, 0);
}

16

1 Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized Symbolic Execution for Model Checking and Testing. TACAS ’03.
2 David A. Ramos and Dawson Engler. Under-Constrained Symbolic Execution: Correctness Checking for Real Code. USENIX Security "15.

Tracking Initialization States for Symbolic Pointers with
Shadow Memory

» Not every pointer dereference needs int f(int **m) {
e eie g : int *p = m[0];
lazy |n|t|aI|zat|on. | int *q - mie]:
 *p should not trigger lazy initialization *q = 0;
return *p;
}

» Use shadow memory to track whether
a symbolic pointer value has already
been initialized

Lazy Initialization with Shadow Memory

Code

int f(int **m) {
int *p = m[O];
int *q = m[@];
*q = 0;
return *p;

& Local Variables

Each pointer-sized memory |

block has a corresponding
shadow memory slot.

S —
e
. -—
—
—

Each local variable has a
reference to a metadata cell.

Shadow Memory

Metadata

. -
—
e
. -—

e
e
e
. -_—
—
—
—
—
. -—
. -_—
—

Each shadow memory slot
stores a reference to a
metadata cell.

S —
A
. -_—
.-

needed.

Each metadata cell stores a
boolean value that indicates
whether lazy allocation is

18

Georgia J'x
Tech|)

CREATING THE NEXT

Lazy Initialization with Shadow Memory

Code

int f(int **m) {

int *p = m[@O];
int *q = m[@O];
*q = 0;
return *p;

}

Application Memory
& Local Variables

— —
——
—_—
. —

Shadow Memory

e —
f—
-
-~

Metadata

19

Georgia
Tech

EEEEEEEEEEEEEEE

I

Lazy Initialization with Shadow Memory

Code

int f(int **m) {
int *p = m[O];
int *q = m[@O];
*q = 0;
return *p;

Application Memory
& Local Variables

-

.

]

Allocate

~
~~~~~~

e L Pyl L SRR B

Shadow Memory

o

Metadata

~ . Unset

20

Georgia @]
Tech

=

CREATING THE NEXT



Lazy Initialization with Shadow Memory

Code

int f(int **m) {
int *p = m[0O];
int *q = m[@O];
*q = 0;
return *p;

Application Memory
& Local Variables

— —
_—
—_—
. —

Shadow Memory

e —
f—
-
-~

Metadata

21

Georgia &
Tech

=

CREATING THE NEXT



Lazy Initialization with Shadow Memory

Code

int f(int **m) {

int *p = m[O];
int *q = m[@];
*q = 0;
return *p;

¥

& Local Variables

. —
_—
—_—
.-

Shadow Memory

 — — e — — o, .
—_—— .
o e—
-
~.

_ —_— — te— .

Metadata

22

Georgia &
Tech

=

CREATING THE NEXT



Lazy Initialization with Shadow Memory

Code

int f(int **m) {
int *p = m[O];
int *q = m[@];
*q = 0;
return *p;

& Local Variables

. —
_—
—_—
.-

~
~~~~~~~~~~~~~~~

Shadow Memory

Metadata

23

Georgia &
Tech|)

CREATING THE NEXT

Lazy Initialization with Shadow Memory

Code

int f(int **m) {
int *p = m[O];
int *q = m[@];
*q = 0;
return *p;

& Local Variables

. —
_—
—_—
.-

Shadow Memory

No need

~
~~~~~~~~~~~~~~~

Metadata

24

Georgia |
Tech ||

CREATING THE NEXT



Evaluation

Lines of Code

Benchmark
« Benchmarks AMG2013
« 2 real-world applications: AMG2013, Athena Athena
« 2 Benchmarks from the NAS Parallel Benchmark Suite: NPB.IS
NPB.IS, NPB.DT '
* A library implemented with MPI: OpenFFT NPB.DT
« A benchmark application used in previous work: Sort OpenFFT
Sort

74,901
63,012
6,498
711
892
127

« Comparison
 Our approach: partial program symbolic execution (PSE)
« Static analysis tool: MPI-Checker 2
« Dynamic analysis tool: MUST 3

1 Zhezhe Chen, Xinyu Li, Jau-Yuan Chen, Hua Zhong, and Feng Qin. SyncChecker: Detecting Synchronization Errors Between MPI Applications and

Libraries. IPDPS "12.
2 Alexander Droste, Michael Kuhn, and Thomas Ludwig. MPI-Checker: Static Analysis for MPI. LLVM ’15.

3 Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and Matthias S. Muller. MPI Runtime Error Detection with MUST: Advances in

Deadlock Detection. SC ’12.

25



Evaluation — Effectiveness

Number of Anomalies Reported

Benchmark| Anomaly Type Zumbelr. of
nomaties PSE MPI-Checker MUST
Resuest Overwriting 0 0 2 (FP) 0
AMG2013
Unmatched Wait 0 0 1 (FP) 0
Buffer Data Race 4 4 (TP) N/A N/A
Athena
Request Overwriting 8 8 (TP) 0 8 (TP)
Sort Buffer Data Race 1 1(TP) N/A 1(TP)

TP = True Positive
FP = False Positive
N/A: Not Supported

26



Benchmark

Time (S)

Memory Usage (MB)

PSE Cfl:/leF()::;er MUST PSE Cfl:/lel:():ll;er MUST
AMG2013 28.57* 96.70 8.54 220 418 677
Athena 1960.14* | 27.13 119.19 277 333 700
OpenFFT 75.21* 4.76 N/A 74 312 N/A
NPB.IS 206.21** 1.00 9.15 1,926 85 654
NPB.DT 9.54** 1.60 8.49 1,316 128 714
Sort 0.11** 0.39 6.38 27 65 682

* Starting from a non-main function.

** Starting from the main function with concrete input and symbolic ranks.




Conclusion

Compilation

C/C++ MPI Application

J

Intercept

)

MPI Anomaly ¢
Detector

Partial

—— LLVM IR + Static —— Static Analysis
NLEE Program Information

Program

Symbolic Execution

Source code available at
https://github.com/fkye/PSE-MPI

28


https://github.com/fkye/PSE-MPI

