
Extracting a Micro State Transition Table
Using KLEE

Norihiro Yoshida, Takahiro Shimizu,
Ryota Yamamoto and Hiroaki Takada

1

Legacy code in
embedded system development
Specification document is often outdated.
▸ ad-hoc code modification when deadline is

approaching
▸ E.g. frequent modifications to condition branches

cause the change of the specifications.

2https://en.wikipedia.org/wiki/File:Ambox_outdated_serious.svg

https://en.wikipedia.org/wiki/File:Ambox_outdated_serious.svg

Reuse in
embedded system development

Practitioners need to address
hardware variations.

3

They frequently reuse source code
from similar hardware products.

Practitioners want to reuse code,
but an outdated document is a barrier for them.

Request from industry

Practitioners need a tool for extracting a state
transition table from C modules.
▸ Static analysis is desirable for them because it is

sometimes hard to prepare a runtime environment.

▸ They can give a state variable.
n Tools do not have to identify a state variable automatically.

▸ They use a Micro State Transition Table (MSTT).
4

Micro State Transition Table (MSTT)

They use a state transition table at module level.

5

state

event

st = 1 st = 2 else

t = 1 & s < 10 s := s+1
out := s

s := s+1
out := 0
(t) st := 3

s := s+1
s := s+1
(t) st := 1

t = 1 & s >= 10 s := s+1 s := s+1 s := s+1

t != 1 NONE NONE NONE

States: a set of values of a user-specified state variable

Events: combinations of values of the other variables.

state
event st = 1 st = 2 else

t = 1 & s < 10 s := s+1
out := s

s := s+1
out := 0
(t) st := 3

s := s+1
s := s+1
(t) st := 1

t = 1 & s >= 10 s := s+1 s := s+1 s := s+1
t != 1 NONE NONE NONE

Why specification inference?

Extracting an MSTT manually from a module in
C source code is unrealistic.
▸ Module includes complex condition branches.
▸ Human resources are limited.

6

Extracting an MSTT using KLEE

n Generate a symbolic execution tree using KLEE
▸ KLEE can analyzes directives, pointers and arrays

correctly.

n Use the implementation from the pull request
#1141 by KennyMacheka

7

Overview of the proposed tool

8

Source code

Run KLEE
Generate

an extended
symbolic

execution tree

Extended
symbolic

execution tree

Mining conditions
& processesCondition-

process table

User

Symbolic
execution tree

Instruction
sequence

Extract
an MSTT

MSTT

Chose a state variable

STEP1: Dump a symbolic execution tree
n Dump a symbolic execution tree and the

corresponding instruction sequence

9

33
34
06
07
08

09

10

13
31
35
14
15
31
35
16

Instruction sequence

int main(){
task();
void task(){
int t,s;
klee_make_symbolic(&state,
sizeof(state), "state");
klee_make_symbolic(&t,
sizeof(t), "t");
klee_make_symbolic(&s,
sizeof(s), "s");
if(t == ON){
}
return 0;
s++;
if(s < 10){
}
return 0;
if(state == 1){
……

Symbolic execution tree

13

15

16

19

false true

false true

false true

false true

depth-first
sequence of
symbolically
executed
instructions

n Add the corresponding line number to
each edge of the symbolic execution tree

10

33,34,6,7,8,9,10

31,35 14

31,35

25,26,27,31,35

17,18,31,35

Extended symbolic execution tree

13

15

16

19

F T

F T

F T

F T 20,21,22,23,31,35

13

15

16

19

33
34
06
07
08

09

10

13
31
35
14
15
31
35
16

int main(){
task();
void task(){
int t,s;
klee_make_symbolic(&state,
sizeof(state), "state");
klee_make_symbolic(&t,
sizeof(t), "t");
klee_make_symbolic(&s,
sizeof(s), "s");
if(t == ON){
}
return 0;
s++;
if(s < 10){
}
return 0;
if(state == 1){
……

STEP2: Extend the symbolic execution tree

STEP3: Generate a condition-process table

11

33,34,6,7,8,9,10

31,35 14

31,35

25,26,27,31,35

17,18,31,35

Extended symbolic execution tree

13

15

16

19

F T

F T

F T

F T 20,21,22,23,31,35

condition process

!(t == ON) int t,s;

t == ON
& !(s < 10)

int t,s;
s++;

t == ON
& s < 10
& !(state == 1)
& !(state == 2)

int t,s;
s++;
s++;
state = 1;
printf(“state changed¥n”);

n Extracting pairs of a condition and the
corresponding process

Condition-Process Table

n Extract an MSTT based on a user-specified
state variable

STEP4: Extract an MSTT

12

MSTT

Condition-Process Table Extract the processes
and the transitionscondition process

!(t == ON) int t,s;

t == ON
& !(s < 10)

int t,s;
s++;

t == ON
& s < 10
& !(state == 1)
& !(state == 2)

int t,s;
s++;
s++;
state = 1;
printf(“state changed¥n”);

!(state == 1)
& !(state == 2)

!(state == 1)
& state == 2 state == 1

!(t == ON) int t,s; int t,s; …

t == ON
& !(s < 10)

int t,s;
s++;

int t,s;
s++; …

t == ON
& s < 10

int t,s;
s++;
s++;
(t)state = 1;
printf(“state changed¥n”);

int t,s;
s++;
out=0;
(t)state = 3;
printf(“state changed¥n”);

…

MSTT

Summary
n We proposed a tool for extracting an MSTT

from source code using KLEE.
1. Dump a symbolic execution tree
2. Extend the symbolic execution tree
3. Generate a condition-process table
4. Extract an MSTT

n Future Works
▸ Lager-scale case study
▸ Extraction of MSTTs with floating point numbers

13

