Extracting a Micro State Transition Table
Using KLEE

Norihiro Yoshida, Takahiro Shimizu,
Ryota Yamamoto and Hiroaki Takada

)7

NAGOYA

UNIVERSITY

Legacy code In

Specification document is often outdated.

» ad-hoc code modification when deadline is
approaching

» E.g. frequent modifications to condition branches
cause the change of the specifications.

https://en.wikipedia.org/wiki/File:Ambox outdated serious.svqg

2

https://en.wikipedia.org/wiki/File:Ambox_outdated_serious.svg

Reuse in

Practitioners need to address
hardware variations.

from similar hardware products.

¥

Practitioners want to reuse code,
but an outdated document is a barrier for them.

Request from industry

Practitioners need a tool for extracting a state
transition table from C modules.

» Static analysis is desirable for them because it is
sometimes hard to prepare a runtime environment.

» They can give a state variable.
= Tools do not have to identify a state variable automatically.

» They use a Micro State Transition Table (MSTT).

Micro State Transition Table (MSTT)

They use a state transition table at module level.

/

States a set of values of a user-specified state variable |
o~ = g

\/

ke st =1 st=2 else
event

<= 541 S:=s+1 S:=s+1
t=18&s<10 Ol;,_ out:=0 S:=5+1
B) st:=3 |[(t)st:=1

t=1&s>=10 |[s:=s+1 s :=s+1 s :=s+1
tl=1 S NONE NONE NONE

[Events: combinations of values of the other variables.

Why specification inference?

Extracting an MSTT manually from a module in

C source code is unrealistic.

>
>

Module includes complex condition branches.
Human resources are limited.

LIS st =1 st=2 else
event
<= s+ S:=s+1 s:=s+1
t=18&s<10 01.;c°— out:=0 |s:=s+1
) ®st:=3 |(®)st:=1
t=1&s>=10 |s:=s+1 s :=s+1 s :=s+1
tl=1 NONE NONE NONE

Extracting an MSTT using KLEE

s Generate a symbolic execution tree using KLEE

» KLEE can analyzes directives, pointers and arrays
correctly.

s Use the implementation from the pull request
#1141 by KennyMacheka

Add option to dump proc tree to CSV file #1141

iGN KennyMacheka wants to merge 2 commits into klee:master from KennyMacheka:print-csv-tree (7]

() Conversation 43 -0- Commits 2 [Fl Checks 2 Files changed 5

KennyMacheka commented on 15 Aug 2019 Contributor = () «--

Is there a better way of opening the csv file in the klee-last directory than hard coding it (line 27 of PTree.cpp)?

And is it worth having a local variable (PTree.h) to store whether we should dump the process tree or just call the
StatsTracker::dumpProcessTree() function?

Overview of the proposed tool

g

Source code

Run KLEE] >

MSTT

(=

User

l Chose a state variable

Symbolic
execution tree

Instruction
sequence

|

Extract
an MSTT

Condition-
process table

BN

Generate
an extended
symbolic
execution tree

<

Extended
symbolic
execution tree

s

Mining conditions
& processes

STEP1: Dump a symbolic execution tree

= Dump a symbolic execution tree and the
corresponding instruction sequence

33
34
06
07
08

09

10

13
31
35
14
15
31
35
16

Symbolic execution tree

int main () {
task () ;
void task() {
int t,s;

klee make symbolic(&state,

sizeof (state),

klee make symbolic(&t,

sizeof (t), "t");
klee make symbolic(é&s,
sizeof(s), "s");

if(t == ON) {
}

return O;
s++;

if(s < 10){
}

return O;
if (state

1) {

"state") ;

depth-first
sequence of
symbolically
executed
Instructions

Instruction sequence

STEP2: Extend the symbolic execution tree

s Add the corresponding line number to
each edge of the symbolic execution tree

l33,34,6,7,8,9,1 0
13

15
13 | if (t == ON) {

31,35 £

] vy 25,26,27,31,35

15 [if(s < 10){
31|}

35 | return O;

16 | if (state == 1){

08 | klee make symbolic(&state,

size;f(state) , "state");
09 | klee_make_symbolic(&t,

17,18,31,35

10 | klee _make_symbolic(&s,

20,21,22,23,31,35

10

Extended symbolic execution tree

STEP3: Generate a condition-process table

m Extracting pairs of a condition and the
corresponding process

Condition-Process Table

33,34,6,7,8,9,10
3 condition process
31,35 £ T 14 I(t == ON) int t,s;
15 t == ON int t,s;
31M & I(s < 10) S++;
16
N'18'31'35 t == ON intts;
&s <10 :II
19 & I(state == 1) staté _ 1
25,26,27,31,35 20,21,22,23,31,35 ! == P
If\ & i(state 2) printf(“state changed¥n”);

Extended symbolic execution tree

11

STEP4: Extract an MSTT

m Extract an MSTT based on a user-specified
state variable

Condition-Process Table Extract the processes

and the transitions

condition process
It == ON) int t,s; E
t==ON int t,s;
& I(s < 10) S++;
MSTT
—_ int t'S; | == | ==
t==ON S+ +; (state == 1) (state == 1) ctate oz 1
& s <10 & I(state == 2) & state ==
& I(state == 1) ST
: state = 1; | !(t == ON) | int t,s; int t,s;
& I(state == 2) ("
printi(’stat ; __ oN int t,s; int t,s;
& I(s < 10) | s++; st++;
intt,s; int t,s;
t == ON S++f S++; |
&s <10 S++; out=0;
(t)state = 1; (t)state = 3;
printf(“state changed¥n”); | printf(“state changed¥n”);

Summary

= We proposed a tool for extracting an MSTT
from source code using KLEE.
1. Dump a symbolic execution tree
2. Extend the symbolic execution tree
3. Generate a condition-process table
4. Extract an MSTT

s Future Works
» Lager-scale case study
» Extraction of MSTTs with floating point numbers

13

