
Applying Symbolic Execution to 
Test Implementations of a 

Network Protocol Against its Specification



Þ However, it is not so effective at testing stateful systems

• Testing network protocol implementations, and
• Exposing requirement violations using assumptions and assertions

• Revealing numerous new security vulnerabilities and bugs in them



• Represent the requirements by logical formulas

• Assume inputs under which a requirement can be violated
• Assert that no forbidden action is performed

• Explores the paths in the augmented SUT

• Confirm the bug on the unmodified SUT



• MUST, MUST NOT, SHOULD, SHOULD NOT, …

• Input validity requirements
• Input-output requirements



“For each received record, the receiver MUST verify that
the record contains a sequence number that does not
duplicate the sequence number of any other record
received during the life of this session.’’

∀ 𝑟, 𝑟′ ∈ 𝑅: 𝑟 ≠ 𝑟′ ⟹ 𝑟. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ≠ 𝑟′. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟

• For a set of Records 𝑅, received during a DTLS session:



Pair-wise conjunction

𝐶𝐻2. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ! = 𝐶𝐾𝐸. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 &
𝐶𝐻2. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ! = 𝐶𝐶𝑆. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 &
𝐶𝐾𝐸. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ! = 𝐶𝐶𝑆. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟

∀ 𝑟, 𝑟′ ∈ 𝑅: 𝑟 ≠ 𝑟′ ⟹ 𝑟. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ≠ 𝑟′. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟

Negation

𝑎𝑠𝑠𝑢𝑚𝑒 (! (

))

𝑅 = { 𝐶𝐻2, 𝐶𝐾𝐸, 𝐶𝐶𝑆}



• Approximate this by successful completion of protocol interaction
• Add failing assertion

“Invalid records SHOULD be silently discarded …”



• Only make symbolic the relevant fields in a requirement
• Other fields are given concrete values from a pre-captured session
• Check one requirement at a time

• De-randomize the SUT



• A tuple of values for the symbolic fields

• Assign concrete values to relevant fields
• Validate the bug by running the resulting test cases on the unmodified SUT



• Captures the records a client and server exchange during a session
• Is used to symbolically execute the SUT in order to check each requirement

• Helper functions
• DTLS packet parser
• Functions to make specific fields of records symbolic and to form Boolean 

expression in 𝑎𝑠𝑠𝑢𝑚𝑒𝑠 and 𝑎𝑠𝑠𝑒𝑟𝑡𝑠



𝑚𝑎𝑘𝑒_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 (𝐶𝐻2. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟)
𝑚𝑎𝑘𝑒_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 (𝐶𝐾𝐸. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟)
𝑚𝑎𝑘𝑒_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 (𝐶𝐶𝑆. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟)

Server

CH2

CKE

CCS

FIN

1 – Load the records 
from files to DTLS 
structured variable

DTLS Test Harness

assert(0)

CH2 CH0 CKE

CCS FIN CH02- Make the relevant 
fields in the records 
symbolic

3 - Assume the negation 
of the requirement

4 - Feed the records 
to the side we are 
testing

𝑎𝑠𝑠𝑢𝑚𝑒 (!(𝐶𝐻2. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ! = 𝐶𝐾𝐸. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 &
𝐶𝐻2. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ! = 𝐶𝐶𝑆. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 &
𝐶𝐾𝐸. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 ! = 𝐶𝐶𝑆. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑛𝑢𝑚𝑏𝑒𝑟))

Shared library



unique bugs 
• 7 vulnerabilities of which 6 are new



• Occurs if the fragment length field is greater than the size of the actual fragment

“When a DTLS implementation receives a handshake message
fragment, it MUST buffer it until it has the entire message”



• Memory over-read/over-write bugs can be missed by KLEE
• Our solution: Allocate memory dynamically with respect to the size of the actual packets

• Even in the absence of symbolic variables
• Provided a benchmark in issue #1255 (700% slowdown)
• (Partial) solution: Execute the functions as an external call



Replication materials available at:
https://zenodo.org/record/5929867#.YkS3HSjMJaT

https://zenodo.org/record/5929867

