Applying Symbolic Execution to
Test Implementations of a
Network Protocol Against its Specification

Hooman Asadian, Paul Fiterau-Brostean, Bengt Jonsson,
Konstantinos Sagonas

Introduction

* Testing correctness of network protocol implementations is essential

A successful software testing technique is symbolic execution
— However, it is not so effective at testing stateful systems

This work:

* Presents a methodology that makes symbolic execution effective in
* Testing network protocol implementations, and
* Exposing requirement violations using assumptions and assertions

« Applies this methodology to implementations of the DTLS protocol
* Revealing numerous new security vulnerabilities and bugs in them

L
UPPSALA
UNIVERSITET

Methodology

1. Extract Specification Requirements
* Represent the requirements by logical formulas

2. Augment the SUT with assumptions and assertions
« Assume inputs under which a requirement can be violated
« Assert that no forbidden action is performed

3. Symbolic Execution
» Explores the paths in the augmented SUT

4. Test Case Construction and Validation
« Confirm the bug on the unmodified SUT i

UPPSALA
UNIVERSITET

1- Extract Specification Requirements

* Requirements from the protocol RFC are identified by particular
keywords:

« MUST, MUST NOT, SHOULD, SHOULD NOT, ...

* Two types of requirements are extracted:
* Input validity requirements
* |nput-output requirements

* Represent the requirements by logical formulas

s
UPPSALA
UNIVERSITET

Input Validity Requirements

* E.g., the DTLS 1.2 RFC states:

“For each received record, the receiver MUST verify that
the record contains a sequence number that does not
duplicate the sequence number of any other record
received during the life of this session.”

* For a set of Records R, received during a DTLS session:

Vr,r €R: r#1r = r.sequence_number # r’.sequence_number

SR\
UPPSALA
UNIVERSITET

2- Augment the SUT with Assumptions

Vr,r €R:r#1r = r.sequence_number # r'.sequence_number

R = { CH2,CKE,CCS}

Pair-wise conjunction

Negation

assume (! (CH2.sequence_number | = CKE.sequence_number &

CH2.sequence_number ! = CCS.sequence_number &

CKE.sequence_number | = CCS.sequence_number))

UPPSALA
UNIVERSITET

2- Augment the SUT with Assertions

« Add an assert statement to check if the implementation of the
protocol uses invalid input in some forbidden way

* E.g., the DTLS 1.2 RFC:

“Invalid records SHOULD be silently discarded ...”

* Check whether progress occurs after reception of invalid records
« Approximate this by successful completion of protocol interaction
« Add failing assertion

\rplet
UPPSALA
UNIVERSITET

3- Symbolic Execution

* Exploring the paths in the augmented SUT looking for assertion
violation, crashes, memory errors, etc

* To achieve scalability:
* Only make symbolic the relevant fields in a requirement
« Other fields are given concrete values from a pre-captured session
* Check one requirement at a time

 To ensure deterministic execution of the SUT:
 De-randomize the SUT

L
UPPSALA
UNIVERSITET

4- Test Case Construction and Validation

* For each path, the tool returns:
* A tuple of values for the symbolic fields

* For the sequence number experiment, we will have concrete values for
sequence number in the participating records

* For concrete values that cause bugs:
« Assign concrete values to relevant fields
» Validate the bug by running the resulting test cases on the unmodified SUT

s
UPPSALA
UNIVERSITET

Implementation and Application to DTLS
» Used KLEE as the symbolic execution engine

 Built a test harness that:
» Captures the records a client and server exchange during a session
 |s used to symbolically execute the SUT in order to check each requirement

 We implemented a shared library to facilitate test harness construction.
It contains:
» Helper functions
 DTLS packet parser

* Functions to make specific fields of records symbolic and to form Boolean
expression in assumes and asserts

L
UPPSALA
UNIVERSITET

1 - Load the records

4 - Feed the records
from files to DTLS to the side we are
structured variable testing

DTLS Test Harness
CH2 CHO CKE
Server
2- Make the relevant CCS FIN C/Yo
fields in the records
symbolic Cx
£
Shared library
C‘/r$
make_symbolic (CH2.sequence_number)
3 - Assume the negation make_symbolllc (CKE.sequence_number)
. make_symbolic (CCS. sequence_number)
of the requirement

assume (/(CH2.sequence_number !
CH2.sequence_number !
CKE.sequence_number !

CKE.sequence_number &
CCS.sequence_number &
CCS.sequence_number))

assert(0)

55
UPPSALA
UNIVERSITET

Evaluation

 We tested 4 DTLS libraries against 16 requirements:
« 36 unique bugs
« 7 vulnerabilities of which 6 are new

OpenSSL Mbed TLS TinyDTLS® TinyDTLS®
1.0.1f 3.0.0-alphal2 2.22.0 7068882 94205ff 53a0d97

)

[Vulnerability | 1 — 3 3
Other -~ — — 3 4
Non-conformance 2 2 3 9 10 10

—

UNIVERSITET

TinyDTLS Reassembly Bug

 The DTLS 1.2 RFC specifies:

“When a DTLS implementation receives a handshake message
fragment, it MUST buffer it until it has the entire message”

 Memory over-read when client/server reassemble a fragmented message
* Occurs if the fragment length field is greater than the size of the actual fragment

* Three pull request attempts before the bug was fixed

UPPSALA
UNIVERSITET

KLEE Experiences

* Protocol implementations define incoming/outgoing buffers sizes with respect
to the Maximum Transmission Unit (MTU)

 Memory over-read/over-write bugs can be missed by KLEE
* Our solution: Allocate memory dynamically with respect to the size of the actual packets

 Significant interpretation slowdown when functions in cryptographic libraries
are executed

* Even in the absence of symbolic variables
* Provided a benchmark in issue #1255 (700% slowdown)
 (Partial) solution: Execute the functions as an external call

s
UPPSALA
UNIVERSITET

Conclusion

Methodology Evaluation

* Wetested 4 DTLS libraries against 16 requirements:
1. Extract Specification Requirements « 36 unique bugs have been found

+ Represent the requirements by formulas « 7vulnerabilities of which é are new

2. Augment the SUT with assumptions and assertions
+ Assumeinputs under whicharequirement can be violated

OpenSSL Mbed TLS ~ TinyDTLS® TinyDTLS®
+ Assertthat no forbidden actionis performed 1.0.1f 3.0.0-alphal2 2.22.0 7068882 94205ff 53a0d97

[Vulnerability 1

. . Other -

3. Symbollc Execution Non-conformance 2
+ Exploresthe pathsin the augmented SUT

(S E
w |
o Wt
o
= -

4, Test Case Construction and Validation
+ Confirmthe bug on the unmodified SUT

- &

UNIVERSITET UNIVERSITET

Thank You for Listening

Replication materials available at: o
https://zenodo.org/record/5929867#.YKS3HS]MJaT

https://zenodo.org/record/5929867

