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ABSTRACT

This paper reports on our experience implementing a technique
for sifting through static analysis reports using dynamic symbolic
execution. Our insight is that if a static analysis tool produces a
partial trace through the program under analysis, annotated with
conditions that the analyser believes are important for the bug
to trigger, then a dynamic symbolic execution tool may be able
to exploit the trace by (a) guiding the search heuristically so that
paths that follow the trace most closely are prioritised for explo-
ration, and (b) pruning the search using the conditions associated
with each step of the trace. This may allow the bug to be quickly
confirmed using dynamic symbolic execution, if it turns out to be a
true positive, yielding an input that triggers the bug.

To experiment with this approach, we have implemented the idea
in a tool chain that allows the popular open-source static analysis
tools Clang Static Analyzer (CSA) and Infer to be combined with
the popular open-source dynamic symbolic execution engine KLEE.
Our findings highlight two interesting negative results. First, while
fault injection experiments show the promise of our technique,
they also reveal that the traces provided by static analysis tools are
not that useful in guiding search. Second, we have systematically
applied CSA and Infer to a large corpus of real-world applications
that are suitable for analysis with KLEE, and find that the static
analysers are rarely able to find non-trivial true positive bugs for
this set of applications.

‘We believe our case study can inform static analysis and dynamic
symbolic execution tool developers as to where improvements may
be necessary, and serve as a call to arms for researchers interested
in combining symbolic execution and static analysis to identify
more suitable benchmark suites for evaluation of research ideas.
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1 INTRODUCTION

Static analysis is a popular method for assisting developers in build-
ing correct and secure software. Despite the wide availability of
static analysis tools, e.g. open source tools such as the Clang Static
Analyzer [14], Frama-C [23] and Infer [10], and commercial offer-
ings such as CodeSonar [29], Coverity Scan [16] and Fortify [22],
‘many projects still disregard these tools due to incorrect bug re-
ports, known as false positives. The more time developers waste
investigating reports that turn out to be false positives, the more
likely they are to abandon using a static analysis tool in the future.

We report our experience designing and evaluating a technique
that aims to automate the process of confirming potential bugs re-
ported by static analysis. If successful, such a technique could make
static analysers more useful in practice by reducing the amount
of time that would need to be spent triaging reports of potential
bugs. Given a bug report from a static analysis tool, our idea is to
use dynamic symbolic execution (DSE) [9] to try to automatically
generate an input that triggers the reported bug.

Suppose a static analyser reports a possible bug at a given pro-
gram location. The analyser typically yields a trace providing (pos-
sibly incomplete) details of a path through the program that, if
followed, might trigger the bug. Our idea is to then apply a DSE
tool to the program, additionally providing the DSE tool with infor-
‘mation related to the trace. Rather than attempting to explore all
paths of the program in the hope of finding some bug, the DSE tool
exploits the trace to explore a massively-pruned subset of paths
that agree with the trace, with the aim of confirming the specific
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int main (int argc, char *argv[]) {
uint8_t inl = argv[1l][0];
uint8_t in2 argv[1][1];
uint8_t in3 argv([1l][2];

uint8_t *p@, *pil;
p@ = malloc(sizeof(uint8_t)) ;0

*p@ = inl;
while (inl > 'H' - 2) {
om0 (000
oif (in2 == 'i") ¢
pl = po;
if (in3 == '1")
free(pl); e
}
--in1;
}

int result = *po; o
free(po);
return result;
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Example

Static Analysis Traces

< - C @ | O D 127.0.0.1:8181/report-e35595.html#EndPath ¥¥

.~ 1 Memory is allocated — '

*p0@ = inl;

while (inl > 'H' - 2) {

| (2 < Assuming the condition is true — J

@« Loop condition s true. Entering loop body — J

| @1« Loop condition is true. Emmmloopmy_.j

@ ‘—Loopcmmonhhbe.mmemmmmonllmzsﬂj

if (inl == 'H")

| @ <« Assuming the condition is true — J

' (8 « Taking true branch — l
- (12, < Taking false branch — l

if (in2 == 'i') {

® <« Assuming the condition is true — J

@ Taking true branch — l

pl = po;
if (B

| 8 « Assuming the condition is true — J
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Example

4  int main (int argc, char *argv[]) { int Ei§:8(tin§nirgcz;rcca[]i]I;?v“) {
; UINts_t-in-=azguitlIel; uints_t in2 = argV[l] [1]"
° uints_t-in2-=-axgvItILll; uint8_t in3 = argv[1] [2]"
7 uint8_t in3 = argv[1][2]; = 9 ;
8 .
9 uint8_t *p@, *pi; uint8_t *pe, ’.‘Pli ‘
10 po = malloc(sizeof(uints_t));G 50 =_mz?ll<?c(51zeof(u1nt8_t));
11 *p@ = inl; po = 1nl;
12
- - . hile (INSTR_LINE_13(inl > 'H' - 2)) {
13 while (inl > 'H' - 2 w
14 eif((inl == 'H") ) {m if (INSTR_LINE_14(inl == 'H'))
15 oif (in2 == 'i") { 17 (FI)TSTRE;NE_lS(an == '1")) {
16 pl = po; i ; . .
17 eif (in3 == '1') if (iNSTR_LIItJE_17(1n3 =="'1"))
18 free(pl); o ree(pl);
19 } . }.
20 --inl; --1inl;
21 } }
22
23 int result = *po; e 11cnt I:'e;l).llt = *p@; INSTR_LINE_23();
24 free(pQ); ree(po) ;
25 return result; return result;
26 } }
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The static analysis error traces in our
experiments in general do not add
(m)any benefits when combined with
targeted symbolic execution.



