Imperial College
London

Combining Static Analysis Error Traces with
Dynamic Symbolic Execution

Frank Busse « Pritam M. Gharat - Cristian Cadar * Alastair F. Donaldson

39 International KLEE Workshop on Symbolic Execution
15-16 September 2022, London



ISSTA 2022

Project: https://srg.doc.ic.ac.uk/projects/klee-sa/

Talk: https://youtu.be/J3lwc3bwTRg

Combining Static Analysis Error Traces with Dynamic Symbolic
Execution (Experience Paper)

Frank Busse
Imperial College London
London, United Kingdom

f.busse@imperial.ac.uk

Cristian Cadar
Imperial College London
London, United Kingdom

c.cadar@imperial.ac.uk

ABSTRACT

This paper reports on our experience implementing a technique
for sifting through static analysis reports using dynamic symbolic
execution. Our insight is that if a static analysis tool produces a
partial trace through the program under analysis, annotated with
conditions that the analyser believes are important for the bug
to trigger, then a dynamic symbolic execution tool may be able
to exploit the trace by (a) guiding the search heuristically so that
paths that follow the trace most closely are prioritised for explo-
ration, and (b) pruning the search using the conditions associated
with each step of the trace. This may allow the bug to be quickly
confirmed using dynamic symbolic execution, if it turns out to be a
true positive, yielding an input that triggers the bug.

To experiment with this approach, we have implemented the idea
in a tool chain that allows the popular open-source static analysis
tools Clang Static Analyzer (CSA) and Infer to be combined with
the popular open-source dynamic symbolic execution engine KLEE.
Our findings highlight two interesting negative results. First, while
fault injection experiments show the promise of our technique,
they also reveal that the traces provided by static analysis tools are
not that useful in guiding search. Second, we have systematically
applied CSA and Infer to a large corpus of real-world applications
that are suitable for analysis with KLEE, and find that the static
analysers are rarely able to find non-trivial true positive bugs for
this set of applications.

‘We believe our case study can inform static analysis and dynamic
symbolic execution tool developers as to where improvements may
be necessary, and serve as a call to arms for researchers interested
in combining symbolic execution and static analysis to identify
more suitable benchmark suites for evaluation of research ideas.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lsts, requi pecific permissi
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ‘22, July 18-22, 2022, Virtual, South Korea

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9379-9/22/07...$15.00
https://doi.org/10.1145/3533767.3534384

Pritam Gharat
Imperial College London
London, United Kingdom

pritam01gharat@gmail.com

Alastair F. Donaldson

Imperial College London

London, United Kingdom
alastair.donaldson@imperial.ac.uk

CCS CONCEPTS
+ Software and its engineering — Software testing and debug-
ging.

KEYWORDS

Software testing, symbolic execution, static analysis, KLEE, Clang
Static Analyzer, Infer

ACM Reference Format:

Frank Busse, Pritam Gharat, Cristian Cadar, and Alastair F. Donaldson.
2022. Combining Static Analysis Error Traces with Dynamic Symbolic
Execution (Experience Paper). In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 22), July
18-22, 2022, Virtual, South Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3533767.3534384

1 INTRODUCTION

Static analysis is a popular method for assisting developers in build-
ing correct and secure software. Despite the wide availability of
static analysis tools, e.g. open source tools such as the Clang Static
Analyzer [14], Frama-C [23] and Infer [10], and commercial offer-
ings such as CodeSonar [29], Coverity Scan [16] and Fortify [22],
‘many projects still disregard these tools due to incorrect bug re-
ports, known as false positives. The more time developers waste
investigating reports that turn out to be false positives, the more
likely they are to abandon using a static analysis tool in the future.

We report our experience designing and evaluating a technique
that aims to automate the process of confirming potential bugs re-
ported by static analysis. If successful, such a technique could make
static analysers more useful in practice by reducing the amount
of time that would need to be spent triaging reports of potential
bugs. Given a bug report from a static analysis tool, our idea is to
use dynamic symbolic execution (DSE) [9] to try to automatically
generate an input that triggers the reported bug.

Suppose a static analyser reports a possible bug at a given pro-
gram location. The analyser typically yields a trace providing (pos-
sibly incomplete) details of a path through the program that, if
followed, might trigger the bug. Our idea is to then apply a DSE
tool to the program, additionally providing the DSE tool with infor-
‘mation related to the trace. Rather than attempting to explore all
paths of the program in the hope of finding some bug, the DSE tool
exploits the trace to explore a massively-pruned subset of paths
that agree with the trace, with the aim of confirming the specific



https://srg.doc.ic.ac.uk/projects/klee-sa/
https://youtu.be/J3lwc3bwTRg

off-the-shelf
static analyser

traces

off-the-shelf
symbolic executor

B
%

concrete inputs for
true positives

C X
gond
a4

developers




https://clang-analyzer.llvm.org/
C/C++/Objective-C

Clang Static
Analyzer

traces

traces

Infer

C/C++/0Objective-C
https://fbinfer.com/

Instrumentation O

bitcode

https://klee.github.io/
LLVM IR

(targeted) KLEE



O 00 N O Ul

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

int main (int argc, char *argv[]) {
uint8_t inl = argv[1l][0];
uint8_t in2 argv[1][1];
uint8_t in3 argv([1l][2];

uint8_t *p@, *pil;
p@ = malloc(sizeof(uint8_t)) ;0

*p@ = inl;
while (inl > 'H' - 2) {
om0 (000
oif (in2 == 'i") ¢
pl = po;
if (in3 == '1")
free(pl); e
}
--in1;
}

int result = *po; o
free(po);
return result;

11

13

16
17

Example

Static Analysis Traces

< - C @ | O D 127.0.0.1:8181/report-e35595.html#EndPath ¥¥

.~ 1 Memory is allocated — '

*p0@ = inl;

while (inl > 'H' - 2) {

| (2 < Assuming the condition is true — J

@« Loop condition s true. Entering loop body — J

| @1« Loop condition is true. Emmmloopmy_.j

@ ‘—Loopcmmonhhbe.mmemmmmonllmzsﬂj

if (inl == 'H")

| @ <« Assuming the condition is true — J

' (8 « Taking true branch — l
- (12, < Taking false branch — l

if (in2 == 'i') {

® <« Assuming the condition is true — J

@ Taking true branch — l

pl = po;
if (B

| 8 « Assuming the condition is true — J

no*meemne AW 5L & 0 O




Example

4  int main (int argc, char *argv[]) { int Ei§:8(tin§nirgcz;rcca[]i]I;?v“) {
; UINts_t-in-=azguitlIel; uints_t in2 = argV[l] [1]"
° uints_t-in2-=-axgvItILll; uint8_t in3 = argv[1] [2]"
7 uint8_t in3 = argv[1][2]; = 9 ;
8 .
9 uint8_t *p@, *pi; uint8_t *pe, ’.‘Pli ‘
10 po = malloc(sizeof(uints_t));G 50 =_mz?ll<?c(51zeof(u1nt8_t));
11 *p@ = inl; po = 1nl;
12
- - . hile (INSTR_LINE_13(inl > 'H' - 2)) {
13 while (inl > 'H' - 2 w
14 eif((inl == 'H") ) {m if (INSTR_LINE_14(inl == 'H'))
15 oif (in2 == 'i") { 17 (FI)TSTRE;NE_lS(an == '1")) {
16 pl = po; i ; . .
17 eif (in3 == '1') if (iNSTR_LIItJE_17(1n3 =="'1"))
18 free(pl); o ree(pl);
19 } . }.
20 --inl; --1inl;
21 } }
22
23 int result = *po; e 11cnt I:'e;l).llt = *p@; INSTR_LINE_23();
24 free(pQ); ree(po) ;
25 return result; return result;
26 } }




Targeted Inter-procedural Control-Flow Graph
Search Heuristic ﬁ+
| g
e drives execution engine towards
instrumented lines
e skips unreachable steps ’
e terminates states that can't reach 5
final step

e prioritises states that

o reached more steps
o are closer to next step




Total time (in minutes)

2,000

1,000

26

54-55 55

i

48-52

54-55

[1lgnore-Default
I Ignore-Targeted
[Jlgnore-TargetLast
1 Require-Default
I Require-Targeted
[ 1Try-Default

[ Try-Targeted

(5 repetitions)

T
‘ Total

Results

The static analysis error traces in our
experiments in general do not add
(m)any benefits when combined with
targeted symbolic execution.



