PRESENTER
Frank Busse

Motivation

Static analysis is fast but imprecise and
hence creates many false positives.

Dynamic symbolic execution is precise
but often gets lost in the many program
paths.

We combine two off-the-shelf static
analysers with a symbolic execution
engine to confirm true positives and
provide developers with concrete test
cases.

Approach

For each static analysis error report we use
its trace to instrument the original program
and use the instrumented locations

1. as target for symbolic execution
2. to constrain the path condition

We provide three different strictness
levels to handle constraints that should
hold according to the error trace:

Ignore noop
Try add constraint if feasible
Require constraint has to hold

Results

Guess what? Neither the intermediate step
locations nor their constraints are beneficial
in most cases (GNU Coreutils fault injection
study based on Clang SA and Infer traces).

o N Oy U1 b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

int main (int argc, char *argv[]) {

uint8_t inl
uint8_t in2
uint8_t in3

argv[1l][0],;
argv[1][1];
argv[1][2];

uint8_t *p@, *pil;
p® = malloc(sizeof(uint8_t));
*p@ = inl;

while (inl > 'H' - 2) {
if (inl == 'H'")
if (in2 == 'i") {
pl = po;
if (in3 == "'1")
free(pl);

--in1;

}

int result = *po;
free(po);
return result;

26
ST I Require
jg 'Eg 30 B IIIII.-Try
g & [Ignore
o= A
) %0 [lIgnore (target only
é = 15 | last trace step)
= G
= © 54-5554-55 55
= 0O
o
= £

Static analysis error traces do not
add any benefits when combined
with targeted symbolic execution.

Combining Static Analysis Error Traces with Dynamic Symbolic Execution (Experience Paper)
Frank Busse, Pritam Gharat, Cristian Cadar, Alastair Donaldson
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2022)

https://srg.doc.ic.ac.uk/projects/klee-sa/

ir

-

int zesult = 0.

i I -

PR

int main (int argc, char *argv[]) {

int INSTR_LINE_13(int XY)

Y R S—— e e R PRY r {
-

<+

assume_sa(7, XY);
assume_sa(2, XY);
return XY;

}

uint8_t inil
uint8_t in2
uint8_t in3

argv([1][o];
argv[1][1];
argv[1][2];

assume_sa(8, IXY);

uint8_t *p@, *pl;
p@ = malloc(sizeof(uint8_t)); G
*p@ = inl;

while (INSTR_LINE_13(in1 > 'H' - 2)) () €@ ©
@ if (INSTR_LINE_14(inl == 'H'))

oif (INSTR_LINE_15(in2 == 'i")) {
pl = po;
if (INSTR_LINE_17(in3 == "'1"))
free(pl);

}
--in1;

}

int result = *p@; INSTR_LINE_23(); @)
free(pQ);
return result;

Static Analysis

Targeted Symbolic Execution

