
Static analysis error traces do not 
add any benefits when combined 
with targeted symbolic execution.
Combining Static Analysis Error Traces with Dynamic Symbolic Execution (Experience Paper)
Frank Busse, Pritam Gharat, Cristian Cadar, Alastair Donaldson
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2022)

https://srg.doc.ic.ac.uk/projects/klee-sa/

PRESENTER

Frank Busse

Motivation
Static analysis is fast but imprecise and 
hence creates many false positives.

Dynamic symbolic execution is precise 
but often gets lost in the many program 
paths.

We combine two off-the-shelf static 
analysers with a symbolic execution 
engine to confirm true positives and 
provide developers with concrete test 
cases.

Static Analysis Program InstrumentationProgram Under Testing Targeted Symbolic Execution

Approach
For each static analysis error report we use 
its trace to instrument the original program 
and use the instrumented locations

1. as target for symbolic execution
2. to constrain the path condition

We provide three different strictness 
levels to handle constraints that should 
hold according to the error trace:

Ignore noop
Try add constraint if feasible
Require constraint has to hold

Results
Guess what? Neither the intermediate step 
locations nor their constraints are beneficial 
in most cases (GNU Coreutils fault injection 
study based on Clang SA and Infer traces).

1

2 7 8
3

4

5

6

9


