
Symbolic Execution
Challenges and Opportunities

Symbolic execution systematically 
explores paths in a program by 
using a constraint solver to reason 
about the feasibility of each path. 
Symbolic execution has gathered 
significant attention in the last 
decade, with applications in a wide 
variety of areas, including software 
engineering, systems, and security.

The main open challenges for 
symbolic execution are: scalability 
(path explosion, constraint solving) 
and inadequate feature support 
(e.g., floating point).

Deterministic Memory Allocation
Schemmel, Büning, Busse, Nowack, Cadar. A Deterministic Memory Allocator for Dynamic 
Symbolic Execution. ECOOP 2022.

Dispatching memory allocation to the system allocator, as in KLEE, leads to 
nondeterministic behaviour. With KDAlloc, we built a memory allocator that 
is cross-run and cross-path deterministic, maximises the probability of 
finding memory-safety bugs, keeps a low memory and performance 
overhead, and allows the interaction with the outside environment.

KDAlloc uses mmap to allocate a large memory region from which it serves 
addresses. Allocation metadata is separated from this memory region and 
attached to the symbolic state instead, directly supporting forking. As the 
object data is also attached to each symbolic execution state, the memory 
region is only used as a source of addresses and for external function calls.

In our experiments running KLEE on a variety of real-world applications, 
KDAlloc showed more deterministic behaviour than KLEE’s default allocator, 
without sacrificing performance or increasing memory usage.

Memoised Symbolic Execution
Busse, Nowack, Cadar. Running Symbolic Execution Forever. ISSTA 2020.

Confirming Static Analysis Bug Reports
Busse, Gharat, Cadar, Donaldson. Combining Static Analysis Error Traces with Dynamic 
Symbolic Execution (Experience Paper). ISSTA 2022.

Static analysis engines are fast but they over-approximate and create many 
false positives. Symbolic execution on the other hand is precise but often 
gets lost in the sheer number of program paths. In this project we tried to 
combine both approaches and confirm static analysis error traces from two 
off-the-shelf static analysis engines (CSA and Infer) with KLEE.

To follow the paths described by an error trace we use two techniques:         
1) program instrumentation to add constraints that have to hold according to 
the trace, and 2) a new targeted search heuristic.

However, our experiments show that most of these constraints are already 
implied by the path to the target and that even the intermediate steps do not 
aid targeting. That means, the targeted search heuristic performs equally 
well when given just the bug location instead of the full trace with conditions 
and intermediate steps.

Approximating Floating Point via Fixed Point
Hughes, Nowack, Schemmel, Cadar. Ongoing work.

Floating-point numbers are notoriously complex, with subnormal numbers, 
infinities and NaNs, dual zeroes and a generally complex format. This in turn 
makes SMT solvers for the theory of floating-point numbers slow and a 
bit-precise analysis of programs using floating-point numbers hard.

In this project we explore the impact of approximating floating-point 
numbers with fixed-point numbers, about which SMT solvers can reason with 
significantly higher efficiency. 

By only performing approximations when querying the SMT solver, analysis 
of concrete floating-point numbers remains bit-precise. Additionally, 
lowering the SMT theory of floating-point numbers to that of bitvectors using 
a fixed-point approximation, enables the use of more SMT solvers to drive 
the symbolic execution of programs using floating-point numbers. 

Pending Constraints
Kapus, Busse, Cadar. Pending Constraints in Symbolic Execution for Better Exploration and 
Seeding. ASE 2020.

This work improves symbolic execution using two observations:

Multi-Version Testing with Product Programs
Sharma, Schemmel, Cadar. Ongoing work.

Automated Chopped Symbolic Execution
Nowack, Ruiz, Zaki, Cadar. Ongoing work.

int main() {
char buf[32];
char *data = read_string();
unsigned int magic = read_number();

 
parse(data); // should be chopped

if (magic == 0xdeadbeef) {
// buffer overflow
memcpy(buf, data, 100);

}
return 0;

}

void parse(char *data) {
// symbolic execution will suffer
// from path explosion
for (int i = 0; i < 100; i++) {

switch (data[i]) {
case ’A’:

handleA();
case ’B’:

handleB();
...
}

}
}

Chopped symbolic execution [Trabish et al., ICSE 2018] lets us avoid 
symbolically executing code portions irrelevant to a given task. Can we 
automate it by identifying beneficial code portions to skip, without the need 
for an expert input?

We iterate over the revision history of public Git repositories and 
demonstrate benefits for patch testing. Our heuristics greedily attempt to 
skip code that the patch does not obviously depend on, then may backtrack.

Comparing multiple versions of the same program is useful in various 
contexts, such as validating refactorings or ensuring that a patch has the 
expected effect. By automatically constructing a product program that 
executes multiple versions of one program at once, existing program testing 
approaches, such as symbolic execution or fuzzing can be used for 
multi-version testing. 

Symbolic execution runtime can be divided into execution time and solving 
time. KLEE currently has no means to reuse solver results across different 
runs of the same program or to resume interrupted executions.

Our extension, named MoKlee, efficiently stores solver decisions and 
metadata on disk as execution tree nodes and uses this information in 
subsequent runs to:

★ Open-source symbolic execution 
engine for C and C++ based on the 
LLVM compiler infrastructure

★ Support for different solvers (STP, 
Z3, MetaSMT)

★ Used in both academia & industry
★ Over 3500 citations of the paper 

that introduced KLEE; over 250 
papers directly building on or using 
KLEE: klee.github.io/publications

★ Active community with over 80 
GitHub contributors, over 2000 stars 
and over 400 mailing list subscribers

★ Download it at klee.github.io,
follow @kleesymex, or try it in your 
browser at klee.doc.ic.ac.uk

klee.github.io

1. Reuse solver results from previous runs
2. Prune already explored paths from 

subsequent runs
3. Detect diverging paths during re-execution

1. Most states are terminated early due to memory pressure 
and the cost for their feasibility checks is wasted

2. Search heuristics are not cache- and seed-aware

Pending constraints are constraints that cannot 
immediately be solved by KLEE’s solver caches 
or using existing seeds. Our approach enhances 
symbolic execution scalability by aggressively 
deferring such paths. This reduces the amount 
of solver calls significantly, leading to more 
efficient exploration. Our evaluation on eight 
popular applications shows this approach can 
achieve higher coverage for both seeded and 
non-seeded exploration.

This allows users of MoKlee to restart testing 
campaigns immediately without wasting time on 
re-exploring already tested paths.

// foo version 1
int foo(int x) {

int res = 2 * x;
return res;

}

// foo version 2
int foo(int x) {

int res = x << 1;
return res;

}

// product program for both versions of foo
void foo(int pp1, int pp2, int* pp_out, int pp1_x, int pp2_x) {

// runs both versions at once
int pp1_res = 2 * x;
int pp2_res = x << 1;
// (global) assertions can compare values from both versions
assert(pp1_res == pp2_res);

pp_out[0] = pp1_res;
pp_out[1] = pp2_res;

}
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