
The S2E Platform
From a research prototype to

a commercial product

Vitaly Chipounov
Cyberhaven, Inc

https://s2e.systems

Ready-for-use docker image, demos,

tutorials, source code, documentation

Vitaly Chipounov

• 2008: started PhD at EPFL, Switzerland - DSLAB, George Candea

• Reverse engineering device drivers by tracing them in QEMU

• Got a pre-release version of KLEE in 2008 => combined it with QEMU

• 2010: reverse engineering + automated testing of device drivers

• 2011: released the S2E platform

• 2014: graduated with PhD, co-founded Cyberhaven

• 2014-2016: malware scanner for office documents

• 2014-2016: finalists at the DARPA CyberGrandChallenge

• Released all of our S2E work to the public

• Tracing dataflows in enterprises for insider threat prevention

S2E is a platform for in-vivo
multi-path analysis of software systems

Bug finding

Verification

Testing

Security checking...

Extensible

Write your own tools

Symbolic execution

Concolic execution

State merging…

On real OSes, with

real apps, libraries, drivers

Pretty much anything that

runs on computers

Automatic firmware emulation USENIX SEC’21

Finding buggy configurations that cause slowdowns ODSI’20

Binary lifting and recompilation EUROSYS’20

Exploitation of tarpit vulnerabilities in malware SP’19

Exploiting uninitialized memory in the Linux kernel NDSS’17

Symbolic fault injection in USB drivers WOOT’17

Bug finding in Windows system components USENIX’17

Bug finding in the BIOS WOOT’15

Verifying software router dataplanes NSDI’14

Testing device firmware NDSS’14

Symbolic execution for interpreted languages ASPLOS’13

Finding trojan message vulnerabilities in distributed systems ASPLOS’13

Testing file systems EUROSYS’12

Bug finding in Linux device drivers OSDI’12

Testing distributed systems WRIPE’12

Bug finding in Windows device drivers USENIX’11

Reverse engineering device drivers EUROSYS’10

x86
ARM

Distributed systems

Kernel

Libraries

Hardware

Applications

Outline

• How does S2E work?
Scaling symbolic execution to entire VMs

• Building commercial products
Automated vulnerability analysis
Scanning documents for malware
Enterprise insider threat detection

• Future of S2E
Making it 10-100 times faster

int func(char c) {
int r = 1;

if (c == 'n') {
r = 0;

}

return r;
}

Dynamic Symbolic Execution

c = α

c = α
r = 1

α == 'n'

c = α
r = 0

α != 'n'

c = α
r = 1

α = 'n' α = 'o'

int func(char c) {
int r = 1;

if (c == 'n') {
r = 0;

}

return r;
}

Dynamic Symbolic Execution

c = α

c = α
r = 1

α == 'n'

c = α
r = 0

α != 'n'

c = α
r = 1

30 GB disk

4 GB RAM?

int func(char c) {
int r = 1;

if (c == 'n') {
r = 0;

}

return r;
}

Dynamic Symbolic Execution

c = α

c = α
r = 1

α == 'n'

c = α
r = 0

α != 'n'

c = α
r = 1

30 GB disk

4 GB RAM?

Analysis

Plugins

Symbolic

Execution

Engine

Dynamic

Binary

Translator

Instrumentation Engine

Path

Selection

Plugins

S2E

Applications

Libraries

Kernel Drivers

Virtual Hardware

VM

What input to make symbolic

What input to make concrete

Search heuristics

Check for crashes,

vulnerability conditions,

performance metrics, etc.

• S2E uses QEMU

• S2E and QEMU are decoupled

• S2E is contained in libs2e.so

• libs2e.so intercepts and
replaces /dev/kvm functionality

• Need a few simple KVM
extensions to intercept DMA,
disk R/W, and device state
snapshotting

• You don’t have to use QEMU
with S2E

KVM Extensions for

Symbolic Execution

Analysis

Plugins

Symbolic

Execution

Engine

Dynamic

Binary

Translator

Instrumentation Engine

Path

Selection

Plugins

S2E

Applications

Libraries

Kernel Drivers

Virtual Hardware

VM
lib

s
2

e
.s

o

KVM-compatible interface

/dev/kvm

• We refactored QEMU’s
translator to make it
standalone

• libcpu, libtcg: code translation
and generation libraries

• libs2ecore, libs2eplugins,
klee, libvmi, etc.

• You can reuse these in your
own projects

• You can swap out the
symbolic execution engine
with your own if you want

Modular Architecture

Analysis

Plugins

Symbolic

Execution

Engine

Dynamic

Binary

Translator

Instrumentation Engine

Path

Selection

Plugins

S2E

Applications

Libraries

Kernel Drivers

Virtual Hardware

VM
lib

s
2

e
.s

o

KVM-compatible interface

/dev/kvm

while(true) {
tb = translate(cpu->pc)
tb->func(cpu);

}}

Dynamic Binary Translation

0x80000000: mov [ebx], eax

void tb_0x80000000(cpu) {
tmp1 = cpu->regs[EBX];
tmp2 = cpu->regs[EAX];
__stl_mmu(tmp1, tmp2);

}

Host-independent

micro-operations

Frontend Host instructions

(x86, arm, etc.)

Backend

translate(pc) {
do {

if (s2e_instrument_ins(pc)) {
emit_uops_s2e();

}}
ins = disas(pc);
emit_uops(ins);
pc += ins.size;

} while (ins != jmp);
}}void tb_0x80000000(cpu) {

s2e_call_plugins(cpu);
tmp1 = cpu->regs[R_EBX];
tmp2 = cpu->regs[R_EAX];
__stl_mmu(tmp1, tmp2);

}

+LLVM

define i64 @tb_0x80000000(i64*) #12 {
entry:
%loc_18ptr = alloca i32
%loc_19ptr = alloca i32
%1 = getelementptr i64, i64* %0, i32 0
%2 = load i64, i64* %1
%eax_ptr = getelementptr %struct.CPUX86State, …, i32 0, i32 0
%ebx_ptr = getelementptr %struct.CPUX86State, …, i32 0, i32 2
%eax = load i32, i32* %eax_ptr
%ebx = load i32, i32* %ebx_ptr
call void @__stl_mmu(i32 %ebx, i32 %eax)
…

}

Dynamic Binary Translation

0x80000000: mov [ebx], eax

Symbolic Execution Engine

• Stripped down version of KLEE from ~2009
20KLOC vs 60KLOC

• Replaced STP with Z3

• Cherry-picked LLVM-related updates from
upstream

• Added concolic execution support

Concolic Execution

Use golden seeds to guide symbolic

execution towards deeper paths

int func(char c) {
int r = 1;

if (c == 'n') {
r = 0;

}

return r;
}

c = (α,'n')

KLEE Improvements

class ExtractExpr {
private:

ref<Expr> expr;
unsigned offset;
Width width;
...

public:
ref<Expr> getExpr();
unsigned getOffset();
Width getWidth();

}

class ExtractExpr {
public:

ref<Expr> expr;
unsigned offset;
Width width;
...

}

Immutable Expressions

class ExecutionState {
...

Cell &getArgumentCell(KFunction *kf, unsigned index);
Cell &getDestCell(KInstruction *target);
void bindLocal(KInstruction *target, ref<Expr> value);
void bindArgument(KFunction *kf, unsigned index, ref<Expr> value);
void stepInstruction();
void bindObject(const ObjectStatePtr &os, bool isLocal); ...
}

class Executor {
...

Cell &getArgumentCell(ExecutionState &state, KFunction *kf, unsigned index);
Cell &getDestCell(ExecutionState &state, KInstruction *target);
void bindLocal(ExecutionState &state, KInstruction *target, ref<Expr> value);
void bindArgument(ExecutionState &state, KFunction *kf, unsigned index, ref<Expr> value);
void stepInstruction(ExecutionState &state);
void bindObject(ExecutionState &state, const ObjectStatePtr &os, bool isLocal); ...
}

Proper encapsulation

KLEE Improvements

• Use smart pointers (almost) everywhere
No new or delete

• Merged MemoryObject and ObjectState
Fewer memory allocations

Outline

• How does S2E work?
Scaling symbolic execution to entire VMs

• Building commercial products
Automated vulnerability analysis
Scanning documents for malware
Enterprise insider threat detection

• Future of S2E
Making it 10-100 times faster

• Evaluate software for vulnerabilities (Attack)

• Defend software against attacks (Defend)

• Keep software running and available (Availability)

Two teams used S2E

Team CodeJitsu

Cyberhaven

UC Berkeley

Syracuse University

Team Disekt

The World's First All-Machine
Hacking Tournament

#1 fastest to attack: first to find

and exploit vulnerabilities

#2 most effective: 392 successful attacks

(1st place launched 402 attacks, 3rd got

265)

Architecture

Symbolic Execution

(S2E)

Fuzzing (AFL)

Traffic Replay

Attack

Disassembly

Static Analysis

Hardening

Performance Testing

Defense

DARPA

Team Interface

Challenge

binaries

Proofs of vulnerability

Hardened binaries

Database

Tasks Results

Scheduler

Tasks

CGC Cluster

• 64 nodes * 20 cores * 256GB mem * 1TB disk

• Scheduling resources for symbolic execution,
fuzzing, hardening, and management tasks

• Component integration

• Reliability is top priority

CGC Cluster

• Shared storage
postgres + glusterfs

• Automated deployment
ansible

• Containerized apps
docker

• Resource scheduling
mesos

• Health monitoring and automated recovery
monit

• Fully open source: https://s2e.systems/

• Documentation and tutorials

• Demo

Cyberhaven Binary Analysis Engine

docker run --rm -ti -w $(pwd) -v $HOME:$HOME \
cyberhaven/s2e-demo /demo/run.sh $(id -u) $(id -g) /demo/CADET_00001

https://s2e.systems/

Outline

• How does S2E work?
Scaling symbolic execution to entire VMs

• Building commercial products
Automated vulnerability analysis
Scanning documents for malware
Enterprise insider threat detection

• Future of S2E
Making it 10-100 times faster

Building a Malware Scanner

• Control flow integrity checking

• Diverse software stacks
• Office 2007-2014

• Acrobat Reader + Foxit Reader

• Windows XP, 7, 8

• Cluster architecture
• Ansible, Postgres, Django, Docker,

Mesos

Control Flow Integrity Checker

func:
0x00: push ebp
0x01: mov ebp, esp
0x03: mov eax, func1
0x08: push param
0x0E: call eax
0x10: add esp, 4
0x13: leave
0x14: ret

func1:
push ebp
mov ebp, esp
...
; Overwrite EIP on the stack
...
leave
ret

Stack

ebp

param

0x10

ebp

Stack

ebp

param

0x13371337

0xabcdef

Shadow stack

0x10

Shadow stack mismatch

CFI violation

Implementation

• CFI checker plugin (<600 LOCs)

• Supporting plugins
WindowsMonitor, ProcessExecutionDetector, MemoryMap,
ModuleMap, ExecutionTracer, UserSpaceTracer

• Automated disk image builder
• 80 combinations of OSes and applications

• Automated GUI clicker (1.8 KLOC)
• Dismiss any popups

• Scroll documents

• Decide when to stop the analysis

Challenges

• System code stack pointer manipulation

• JITed code

• Self-modifying code

• Identifying valid call targets

• No support for indirect jumps

• Single path, no symbolic execution

• 1’057’204 Office+PDF files analyzed
• Diverse set of files, many corner cases

• 4’110’210 analyses
• ~4 stacks per file

• 5 - 15 min per file per stack

• 198 dangerous files detected
• Many of them undetected by AVs

• Bypassed all other security defenses deployed

Performance

Lessons Learned

• Too slow, cannot do inline scanning
Malicious emails have to be deleted later

• Limited threat coverage
One more solution to manage

• Existing antiviruses deemed good enough
Windows Defender is built-in

• Strong competition
Machine learning / AI

• Could take a lot of time before finding a threat
Hard to demonstrate value quickly

Outline

• How does S2E work?
Scaling symbolic execution to entire VMs

• Building commercial products
Automated vulnerability analysis
Scanning documents for malware
Enterprise insider threat detection

• Future of S2E
Making it 10-100 times faster

Tracing dataflows in enterprises

• We do not use S2E anymore
Open sourced everything we built with it

• Built new technology from scratch
After listening to customers this time

• Scalable dataflow tracing on the backend
Handle graphs with billions of nodes, 100k+
endpoints per customer

• Windows and MacOS endpoints
Use all possible sources of events

Outline

• How does S2E work?
Scaling symbolic execution to entire VMs

• Building commercial products
Automated vulnerability analysis
Scanning documents for malware
Insider threat detection in enterprises

• Future of S2E
Making it run 10-100x faster

Typical user experience
(in 2011)

• Download and build S2E

• Install guest OS

• Try to boot it in S2E

• Take a snapshot

• Write a config file from scratch

• ...

• Two weeks later, still doesn’t work

Typical user experience
(in 2022)

• Build and run a demo in less than one hour

• It works! Let me try it on my own programs

• ...

• Why doesn’t it run faster?

Making S2E Fast

• Optimizing single-path execution
Accommodate large software stacks

• Optimizing multi-path exploration
Integrate state-of-the-art program analysis
techniques

Concrete execution

10x slower than

native execution

5 min to boot Win7

Symbolic interpreter

100-1000x slower

than native execution

1 minute to boot

QEMU BIOS in KLEE

Analysis

Plugins

Symbolic

Execution

Engine

Dynamic

Binary

Translator

Instrumentation Engine

Path

Selection

Plugins

S2E

Applications

Libraries

Kernel Drivers

Virtual Hardware

VM

lib
s
2

e
.s

o

KVM-compatible interface

/dev/kvm

Bottlenecks

cmp dl, 0x25
je addrGuest code

Dynamic Binary Translation

mov $0x7fbc565baf88,%rbp
mov %rbp,0x518(%r14)
mov 0x10(%r14),%rbp
sub $0x25,%rbp
mov %rbp,%rbx
movzbl %bl,%ebx
mov $0xe,%r12d
mov %r12d,0x80(%r14)
mov $0x25,%r12d
mov %r12,0x88(%r14)
mov %rbp,0x90(%r14)
…

Host code

23 instructions

Hardware Virtualization

Analysis

Plugins

Symbolic

Execution

Engine

Dynamic

Binary

Translator

Instrumentation Engine

Path

Selection

Plugins

S2E

Applications

Libraries

Kernel Drivers

Virtual Hardware

VM
lib

s
2

e
.s

o

KVM-compatible interface

/dev/kvm

Hardware

Virtualization

Engine

Linux KVM

Driver

User space Kernel space

Hardware Virtualization Challenges

• Efficiently switching between DBT/KVM/KLEE

• Instrumenting code running in KVM

Concrete execution

10x slower than

native execution

5 min to boot Win7

Symbolic interpreter

100-1000x slower

than native execution

1 minute to boot

QEMU BIOS in KLEE

Analysis

Plugins

Symbolic

Execution

Engine

Dynamic

Binary

Translator

Instrumentation Engine

Path

Selection

Plugins

S2E

Applications

Libraries

Kernel Drivers

Virtual Hardware

VM

lib
s
2

e
.s

o

KVM-compatible interface

/dev/kvm

Bottlenecks

cmp dl, 0x25
je addrGuest code

Dynamic Binary Translation

define i64 @tcg-llvm-tb-f27da-5-89-0-b4(i64*) alwaysinline {
entry:
%1 = getelementptr i64* %0, i32 0
%env_v = load i64* %1
%state = inttoptr i64 %env_v to %struct.CPUX86State*
%2 = getelementptr %struct.CPUX86State* %state, i32 0, i32 5
%3 = getelementptr %struct.CPUX86State* %state, i32 0, i32 1
%4 = add i64 %env_v, 1304
%5 = inttoptr i64 %4 to i64*
store i64 140373302116232, i64* %5
store i64 993242, i64* %2
%6 = getelementptr %struct.CPUX86State* %state, i32 0, i32 0, i32 2
%rdx_v = load i64* %6
%7 = getelementptr %struct.CPUX86State* %state, i32 0, i32 2
store i64 37, i64* %7
%tmp-18_v = sub i64 %rdx_v, 37
%8 = getelementptr %struct.CPUX86State* %state, i32 0, i32 3
store i64 %tmp-18_v, i64* %8
store i64 993245, i64* %2
store i64 14, i64* %3
%9 = bitcast i64* %3 to i32*
store i32 14, i32* %9
%tmp4_v = and i64 %tmp-18_v, 255
%10 = icmp eq i64 %tmp4_v, 0
br i1 %10, label %label_0, label %11

; <label>:11 ; preds = %entry
%12 = getelementptr i64* %0, i32 0
%env_v1 = load i64* %12
store i64 993247, i64* %2
store i8 0, i8* inttoptr (i64 31703248 to i8*)
ret i64 140373293713968

label_0: ; preds = %entry
%13 = getelementptr i64* %0, i32 0
%env_v2 = load i64* %13
store i64 993255, i64* %2
store i8 1, i8* inttoptr (i64 31703248 to i8*)
ret i64 140373293713969

}

LLVM code

Problems with LLVM

• Slow to generate
45 minutes to boot Windows XP if translating
all instructions to LLVM in addition to x86

• Slow to interpret
Pathological case: tight loop with a million
iterations

We need an intermediate representation

that is fast to generate and interpret

Tiny Code Interpreter (TCI)

• QEMU comes with TCI (Tiny Code Interpreter)

• Fast to translate and interpret

• Add symbolic expressions support to TCI

• KLEE will still be used to handle emulation
helpers

Outline

• How does S2E work?
Scaling symbolic execution to entire VMs

• Building commercial products
Automated vulnerability analysis
Scanning documents for malware
Insider threat detection in enterprises

• Future of S2E
Making it run 10-100x faster

S2E is a platform for in-vivo
multi-path analysis of software systems

Bug finding

Verification

Testing

Security checking…

Extensible

Write your own tools

Symbolic execution

Concolic execution

State merging…

On real OSes, with

real apps, libraries, drivers

Pretty much anything that

runs on computers

https://s2e.systems

Ready-for-use docker image, demos,

tutorials, source code, documentation

