
Fuzzing Symbolic Expressions
Emilio Coppa

The work presented today appeared at ICSE 2021 (conference) and COSE 2021 (journal).

Co-authors: Luca Borzacchiello and Camil Demetrescu

The work presented today appeared at ICSE 2021 (conference) and COSE 2021 (journal).

Co-authors: Luca Borzacchiello and Camil Demetrescu

Unfortunately, Camil passed away in April 2022

● Full professor at Sapienza University of Rome

● A brilliant researcher (algorithms, program analyses)

● One of the best teachers. Students loved him.

He was my (best) teacher…

Me

Camil

2007

He was my thesis advisor (both BSc and MSc)…

Me

Camil

2007
2012

He was my co-author for 10+ years and 20+ papers

Me

Camil

2012 2012

PLDI 2012 @ China

[my first paper]

He was my friend…

It was an honour for me
to work with Camil.

Symbolic execution is the coolest program analysis ever met!
However:
● hard to implement
● …a lot of (non trivial) scalability issues!

When instead considering fuzzing:
● simple(r) to implement
● quite effective in practice

(see OSS-Fuzz results)

Symbolic execution is the coolest program analysis ever met!
However:
● hard to implement
● …a lot of (non trivial) scalability issues!

When instead considering fuzzing:
● simple(r) to implement
● quite effective in practice

(see OSS-Fuzz results)

1. Pick an input from the queue

2. Mutate it:
○ random bit-flips
○ random substitutions
○ random… things

Coverage-guided Fuzzing

Input
queue

Mutation
Engine

Input I’

3. Run the program
○ Look for crashes
○ Track code coverage

4. If new coverage: keep
mutating that input!

5. Repeat from (1) for
a trillion of times

Coverage-guided Fuzzing (2)

Program
Execution

Code
Coverage

Input
queue

Mutation
Engine

BugsInput I’

Can we reduce the number of (wasted) attempts?

Can we reduce the number of (wasted) attempts?

Some works have used taint analysis to
understand which bytes to mutate.

Can we reduce the number of (wasted) attempts?

Some works have used taint analysis to
understand which bytes to mutate.

What if we build symbolic expressions to learn
how to mutate the input?

Input I

Program
Execution

Symbolic
Expressions

Smart
Mutations
on Input I Input I’

Run Trace Learn Mutate

b
1

Trace? Concolic Execution!

A dynamic twist of symbolic execution: execute the program over an input and
 build expressions along the path, negating
 branch conditions to generate new inputs

b
2

b
3

path induced by the current input

negate

branch

negate

branch

negate

branch

Pros:
● driven by one input: no need for a

solver to go on in the exploration
● exploit concrete state when hard to

reason symbolically

Cons
● for each input, rebuild expressions

[recent works significantly reduced
this cost, see, e.g., SymCC, Fuzzolic,
SymQEMU, SymSan]

Observations

1. is satisfied by the input I that has induced the execution

2. to learn how to mutate input I, we should look at

3. if we change some bytes in input I, then may become unsatisfied.
Hence we should do it carefully… but fuzzing is often lucky… we
may expect to be lucky as well.

Fuzzy-SAT: Learn and Mutate

Given a branch query and the input I, mutate the bytes of the input trying to solve
while keeping satisfiable.

Fuzzy-SAT Architecture

Fuzzy-SAT: Learn and Mutate

Given a branch query and the input I, mutate the bytes of the input trying to solve
while keeping satisfiable. Two stages:

● Analysis: learn from the symbolic expressions added to

Fuzzy-SAT Architecture

Fuzzy-SAT: Learn and Mutate

Given a branch query and the input I, mutate the bytes of the input trying to solve
while keeping satisfiable. Two stages:

● Analysis: learn from the symbolic expressions added to
● Reasoning: use the acquired knowledge to apply simple but fast mutations to the input

Fuzzy-SAT Architecture

Analysis Stage (simplified)
Learn from the constraints added to

- Detect input groups

- Detect constants

- Detect ITS expressions

- Detect range constraints

Analysis Stage (simplified)
Learn from the constraints added to

- Detect input groups

- Detect constants

- Detect ITS expressions

- Detect range constraints

Input Group: input symbols that are used together in the
expression, and that never mix their bits

Analysis Stage (simplified)
Learn from the constraints added to

- Detect input groups

- Detect constants

- Detect ITS expressions

- Detect range constraints

Collect the constants within the symbolic expression

Analysis Stage (simplified)

- Detect input groups

- Detect constants

- Detect ITS expressions

- Detect range constraints

Detect expressions that contains an input-to-state [1]
relation, i.e., a comparison of an input group with raw
bytes

[1] C. Aschermann et al. “REDQUEEN: fuzzing with input-to-state correspondence”. NDSS 2019

Learn from the constraints added to

Analysis Stage (simplified)

- Detect input groups

- Detect constants

- Detect ITS expressions

- Detect range constraints

Detect patterns where a constraint sets an upper or
lower bound to an input group:

Learn from the constraints added to

Reasoning Stage (simplified)
Mutate the bytes of the seed, trying to keep satisfiable

– Mutation Engine

- Input-to-State

- Range brute-force

- Gradient descent

- AFL det. and non-det.

– Multi-Goal Engine

Reasoning Stage (simplified)
Mutate the bytes of the seed, trying to keep satisfiable

– Mutation Engine

- Input-to-State

- Range brute-force

- Gradient descent

- AFL det. and non-det.

– Multi-Goal Engine

If the query has been tagged as input-to-state by the
analysis stage, substitute the raw bytes in the input
group

Reasoning Stage (simplified)
Mutate the bytes of the seed, trying to keep satisfiable

– Mutation Engine

- Input-to-State

- Range brute-force

- Gradient descent

- AFL det. and non-det.

– Multi-Goal Engine

If an expression contains only one input group that has
a small interval associated with it, brute force all the
possible values

Result of range analysis

Query

Reasoning Stage (simplified)
Mutate the bytes of the seed, trying to keep satisfiable

– Mutation Engine

- Input-to-State

- Range brute-force

- Gradient descent

- AFL det. and non-det.

– Multi-Goal Engine

Reduce the query to a minimization problem, and use
gradient descent to solve it

1

1 The implementation also takes into account the wrap around!

Reasoning Stage (simplified)
Mutate the bytes of the seed, trying to keep satisfiable

– Mutation Engine

- Input-to-State

- Range brute-force

- Gradient descent

- AFL det. and non-det.

– Multi-Goal Engine

Apply deterministic and non-deterministic
transformations inspired by two mutation stages of AFL

● AFL transformations include bit-flips, addition and
subtraction with small constants, etc.

● Differently from AFL:
○ our mutations are applied only to the bytes

involved in the branch condition
○ multi-byte mutations are considered only in

the presence of multi-byte input groups

Multi-Goal Engine (simplified)

1. int f(char i1, char i2) {
2. assert (i1 == i2);
3. if (i2 == 1)
4. return 0;
5. return 1;
6. }

Looking only at the branch condition is too restrictive:

 cannot be solved by mutating only

Multi-Goal Engine (simplified)

1. int f(char i1, char i2) {
2. assert (i1 == i2);
3. if (i2 == 1)
4. return 0;
5. return 1;
6. }

Looking only at the branch condition is too restrictive:

 cannot be solved by mutating only

The multi-goal engine employs a greedy approach to solve this problem. Assuming that the

reasoning engine solved :

● It checks whether has conflicting constraints in

● It tries to solve the conflicting constraints without modifying the bytes involved in

Implementation

Fuzzy-SAT:
● C library
● Operates on Z3 expressions
● Integration in:

○ QSYM
○ Fuzzolic
○ SymQEMU
○ SymCC

Fuzzy-SAT is available at
https://season-lab.github.io/fuzzolic/

https://season-lab.github.io/fuzzolic/

Can Fuzzy-SAT actually solve queries generated by
concolic executors?

Evaluation #1: Fuzzy-SAT vs Z3 vs JFS

● Fuzzy-SAT vs Z3: Fuzzy-SAT may solve some queries that are not solved within the timeout by Z3. But
is true also the opposite! Moreover, Fuzzy-SAT is designed to “fail fast” on too complex queries.

● Fuzzy-SAT vs JFS: Fuzzy-SAT may solve more queries than JFS likely due to the knowledge acquired
during the analysis stage.

● Overall, Fuzzy-SAT was able to solve more queries than Z3/JFS, while also being faster.

Queries collected with QSYM using 12 real-world programs.

Does Fuzzy-SAT only generate inputs that are
already produced by traditional fuzzers?

Does it actually make the difference?

Evaluation #2: Code Coverage

19

Fuzzolic (our concolic executor) with Fuzzy-SAT against:
● AFL++
● QSYM using Z3
● Eclipser

Concolic executors (Fuzzolic, QSYM) used in a
hybrid fuzzing setup.

8H experiments, Fuzzolic with Fuzzy-SAT reached:
● an higher coverage in 7/12 programs
● a comparable coverage in 4/12 programs
● a lower coverage in 1/12 programs

Concluding remarks
Limitations (future directions?):
● It does not support the theory of arrays [ABV] and floating points.
● Not yet a clue on how to alternate effectively Fuzzy-SAT and Z3.

What we have learned:
● There are reasons why fuzzing is effective.
● Building symbolic expressions is expensive but we can learn a lot from them.

● JFS and Fuzzy-SAT are just first steps. Another recent step: JIGSAW @ IEEE SP 22

Thank you
I am open to research collaborations!

Let us have a chat if you wish :)

