Symbolic Execution the Swiss-Knife of the Reverse
Engineer Toolbox

KLEE Workshop — September 16-17th, 2022

Robin David Quarkslab <rdavid@quarkslab.com>
Christian Heitman Quarkslab <cheitman@quarkslab.com>
Richard Abou Chaaya Quarkslab <rabouchaaya@quarkslab.com>

Quarkslab

Part 1. Obfuscation

Part 2. Exploration / Fuzzing

Part 3. Research & TritonDSE

2/ 29

Use-Case #1
Obfuscation Assessment

Quarkslab

Obfuscation Assessment

Use-Case #1
Assessing obfuscation strength

Obfuscation in the industry

» Banks, payment solutions
» Mobiles applications

» DRM, Video-on-Demand
> etc.

= Multiple existing work to attack opaque predicates [1, 16, 3] or virtualization [12]

3/ 29

Mixed-Boolean Arithmetic

MEBA (Mixed Boolean Arithmetic) diversify simple operations by mixing them
with arithmetic and bitwise operations that are semantically equivalent.

(A A —B) + B) «

OBFUSCATION
> NA—-«ave) -
/ g]] (a A B)) «) = (U
[oo A —B) + B) «
e ave)—(&aA
DEOBFUSCATION?

8))))

= Can be defeated with: Symbolic Execution + [4, 5].

4/ 29

SE for Synthesis

Assembly Intermediate Representation AST
mov rax, rsi raxe := rsi
xor rax OxEFFFFFFFFFFFFFFF raxl := rax ® OXFFFFFFFFFFFFFFFF
mov rcx, rdi :2;3 :3’1-‘1
xor rex, OxPFFFFFFFFFFFFFFE rexl i= rcx0 e OxFFFFFFFFFFFFFFFF
fov rdx, rdi SE rcx2 rcxl & rsi
and rdx, rsi > ::;‘w & rsi
xor reX, OXEFFFFFFFFFFFFFFF rdx1 e OXxFFFFFFFFFFFFFFFF
) X X
add rax, rcx ::;2|+r§:.x2
sub rax, rd).(rax3 - rdx2
add rax, rdi rax5 := rax4 + rdio
retn
= Use SE as a mean of extracting of registers or memory locations

in the program.

5/ 29

Dataflow Expressions Synthesis

Synthesis

expr 1/0 Oracle expr’

—> AST simplification —> 6%
algorithm

precomputed table

Simplification Algorithm I/O Oracle Synthesis

AST traversal using different strategies to Evaluating expressions on a set of inputs. If it
trying simplifying opportunistically sub-ASTs. expresses the same behavior than some
smaller pre-computed expressions replaces it

6/ 29

MBA: Concrete use-cases

Figure: MBA extracted from messaging application

Other concrete usages:
» Off-the-shelf obfuscators
» Used in Android SafetyNet [15]

Conclusion: SE very useful for obfuscation to manipulate the semantic which is the only
thing that must be preserved by obfuscation.

7/ 29

Use-Case #2
Program Exploration

Quarkslab

Program Exploration 3

Use-Case #2 _
In support of fuzzing to assess static analysis alerts

8/ 29

Program Exploration

Use-Case #2
In support of fuzzing to assess static analysis alerts

Industry Problem
Many companies uses static analyzer for security or compliance before
shipping their code

8/ 29

Program Exploration

Use-Case #2
In support of fuzzing to assess static analysis alerts

Industry Problem
Many companies uses static analyzer for security or compliance before
shipping their code

Underlying Problem

= Static analyzers usually yield many alerts for which it is difficult
to discriminate true flaws and false positives.

8/ 29

Static Analysis

£ Kklocwork

Coding standard (“checkers’)

» Langages: C, C++, Java, » AUTOSAR

> Checkers: > CWE for C# and Java
» 300 checkers C/C++ (&

>

> 91 community checkers AUTOSAR Joint Strike Fighter Air Vehicle C++
» 24 CERT community checkers > MISRA
> » PCIDSS

= Usually de-facto standard for compliance in some automotive, industrial systems.

9/ 29

https://docs.roguewave.com/en/klocwork/2021/candccheckerreference
https://docs.roguewave.com/en/klocwork/2021/nolinksautosarccheckerreference
https://docs.roguewave.com/en/klocwork/2021/certcommunitycandccheckerreference

Klocwork Report

#5116: Array 'buffer’ of size 2049 may use index value(s) 0..2062
Mhomefuseriwork/PASTIS/programme_etalon_v4fcyclone_tcp/cyclone_tep/ttp/http_client.c:577 | hitpClientSetHost()
Code: ABV ERAL | Seventy: Critical (1) | State: Existing | Status: Analyze | Taxenomy: C and C++ | Owner: unowned
#5139 Pointer ‘datagram’ returned from call to function ‘netBufferAt’ at line 431 may be NULL and will be dereferenced at line 434.
fhome/useriwork/PASTIS/programme_etalon_vd/cyclone_tcpl/cyclone_tcplipvdiipvd frag.c:434 | ipv4ReassembleDatagram()

Code: NPD.FUNC . MUST | Severity: Critical (1) | State: Existing | Status: Analyze | Taxonomy: C and C++ | Owner: unowned

#5155. function 'strcpy’ does not check buffer boundaries but outputs to buffer ‘context->method’ of fixed size (9)
‘homefuseriwork/PASTIS/programme_etalon_vdfcyclone_tcp/cyclone_tcp/httpihttp_client.c:449 | hitpClientSetMethod()

Code: SV STRBO.UNBOUND_COPY | Severity- Critical (1) | State: Existing | Status: Analyze | Taxonomy: C and C++ | Ownes

unowned

#5321: Pointer 'segment?’ returned from call to function ‘netBufferAt' at line 349 may be NULL and will be dereferenced at line 352
fhome/user/work/PASTIS/programme_etalon_v4fcyclone_tcp/cyclone_tcpicoreftcp_misc.c:352 | tcpSendResetSegment()

Code: NPD.FUNC.MUST | Severity: Critical (1) | State: Existing | Status: Analyze | Taxonomy: C and C++ | Owner: unowned

#5342: Pointer "arpRequest’ returned from call to function 'netBufferAt' at line 909 may be NULL and will be dereferenced at line 912.

/nhomefuserwork/PASTIS/programme_etalen_v4/cyclone_tcp/cyclone_tep/ipv4/arp.c:912 | arpSendRequest()

Code: NPD.FUNC.MUST | Severity: Critical (1) | State: Existing | Status: Analyze | Taxonomy: C and C++ | Owner: unowned

#5396: Pointer ‘vlanTag' returned from call to function "netBufierAt’ at line 222 may be NULL and will be dereferenced at line 225.
/nomefuserwork/PASTIS/programme_etalen_v4/cyclone_tcp/cyclone_tcp/core/ethernet_misc.c:225 | ethEncodeVianTag()

Code: NPD.FUNC.MUST | Severity: Critical (1) | State: Existing | Status: Analyze | Taxonomy: C and C++ | Owner: unowned

10/ 29

Intrinsic Functions Insertion

#5116: Array buffer of size 2049 may use index value(s) .
TomeluserworkdPASTISIprogramme stalon, Va/eyc . cpitpintp_client 577 | [{ "kid": 5116,
ABVGENERAL | Severty: Crical (1) | State: Exist 28 | Taxonomy: C and C++ | O "params": ["buffer”, "2049"]
#5130: Pointer ‘datagram' returned from call to function ‘netBufferAt at line y be NI N - Lo !
homeluserwarkiPASTIS/programme_etalon_vafcyclone_{cpicyclone_tcpipvfipvd,_frag.c:434 | taxonomy": "C and C++",
Code: NPD.FUNC.MUST | Severity: Crtical (1) | State: Existing | Status: Analyze | Taxonomy: C and G-+ "severity": "Critical",

"file": "/home/user/src/http/http_client.c",

0.2062

| Status: An

#5155 function 'strpy’ does not check buffer boundaries but outpus to buffer ‘context->md
IhomeluseriorkIPASTIS/programme_etalon_y4fcyclone_tepicycione_tep/httpihttp_client ¢:449 |

Cote: SV.STRBO.UNBOUND_COPY | Severity- Critical (1) | Sate: Existing | Satus: Analyze | Taxonomy | K1_report_to_json "line": 577,

#5321: Pointer segment2' returned from call to function 'netBufferAt at line 249 maybe N — 3 “function": "httpClientSetHost",
Ihomeluseriwork/PASTIS/programme _etalon_v4fcyclone_tcpicyclone_teplcore/tcp_misc.c:352 | " PG | s)

Code: NPD.FUNC MUST | Severiy: Criical (1) | State: Eistng | Status: Analyze | Taxonomy: C and C+ | raw_line": “Array 'buffer' of size 2049

#5342: Pointer “arpRequest returned from call to function 'netBufferAt at line 909 may be may use index value(s) 0..2062",

fomeluseriwork/PASTIS/programme_etalon_v4/cyclone_tcpicyclone_teplipud/ar.c:912 | amsent

NPD.FUNCMUST | Severiy: Criical (1) | State: Existing | Status: Analyze | Taxonomy: C and C++
#5396: Pointer ‘vianTag' returned from call to function ‘netBufferAt at line 222 may be NUL|
Thomelusermork/PASTIS/programme_etalon_vfcyclone_tepicyclone_teplcore/etherniet_misc.c:2
Code: NPD.FUNC MUST | Severit: Critcal (1) | State: Existing | Status: Analyze | Taxonomy: C and C++ I

"code": "ABV_GENERAL"

Klocwork report (HTML) Klocwork report (JSON)

__Klocwork_alert placeholder(8, "SV_STRBO BOUND_COPY OVERFLOW",
strncpy(conn->request, token, n);

(conn->request), token, 71);

kl_alert_inserter

Advantages

> allows retrieving precisely the alert location in resulting binary
» body on __klocwork_alert_placeholder print on stdout alert ID

11/ 29

The Approach

Combining Fuzzing and Symbolic Execution
to
cover the alerts and to if they are true positives

Fuzzing [blazingly fast]
» Coverage: by parsing stdout
» Validation: in case of crash — last intrinsic covered

DSE

» Coverage: detect the call to the intrinsic
» Validation: dedicated runtime or symbolic checkers

12/ 29

Sym bolic Checker SV_STRBO_BOUND_COPY_OVERFLOW

__klocwork_alert_placeholder(8, "SV_[..]_OVERFLOW", sizeof (con->request), src, n);
strncpy(con->request, src, n);

def handle_svstrbo_bound_copy_ov(se) bool:
dst_size se.get_argument_value(2)
ptr_inpt se.get_argument_value(3)
n, sym_n se.get_full_argument (4)

if n dst_size len(se.get_memory_string(ptr_inpt)) dst_size:
return True

predicate [sym.get_path_constraints(), sym_n > dst_size]

for i range (dst_size 1):
sym_cell = sym.read_symbolic_memory_byte(ptr_inpt + i)
predicate.append(cell 0)

st, model sym.solve(predicate)

if st SolverStatus.SAT:
crash_seed = mk_new_crashing_seed(se, model)
return True

= Can flag input as “crashing” even though the harness is not crashing per-se.

Complete Workflow

Source
code

code
harnessing

Creation of the
harness

14/ 29

Complete Workflow

Source code
code harnessing

SAST

Alerts
report

Creation of the
harness

:

Static Analysis

(manual checking intrinsic insertion)

14/ 29

Complete Workflow

Source code
code harnessing

SAST

| 5| Alerts
report

Creation of the
harness

:

Static Analysis

(manual checking intrinsic insertion)

compilation fuzzing
for fuzzer

{

- coverage

compilation
for DSE /7 DSE

Dynamic Testing

- validation

Report

14/ 29

Complete Workflow

compilation (% /fuzzing
for fuzzer
¢ Report

- coverage
compilation [% / - validation
for DSE DSE

Dynamic Testing

Creation of the
harness

Static Analysis

(manual checking intrinsic insertion)

Source code > SAsT || Alerts
code harnessing / ! report

1

1

1

1

1

1

1

1

1

1

Indeed can’t prove an alerts to be false negative
Helps the analyst focusing on remaining uncovered, unvalidated alerts

14/ 29

Ensemble Fuzzing

Definition
Approach aiming at making testing tools to to
fuzz a given target.

Rational:
» No fuzzer is universally better on every targets
» Efficiency depends on the fuzzing approach, coverage, mutation technique etc..

7,9 2 6,10

15/ 29

Our project: PASTIS

SASTIS

written in Python
distributed
run engines in parrallel

v

enable adding new fuzzers
DSE: Triton

. Used it to fuzz TCP/IP stacks. Found
fuzzing: Honggfuzz, AFL++

issues for which some have CVEs
replay (CVE-2021-26788).

vVvyVvyVvyyvyy

16/ 29

https://blog.quarkslab.com/remote-denial-of-service-on-cyclonetcp-cve-2021-26788.html

PASTIS Architecture

Initial Configuration
- binary
- SAST report (ki
- configurations (coverage strategy, etc)

1. Connection (dle
12, Reception of binary (+opts)
1 3. Seed exchange (+logs)

communication

Python driver

l execve

Honggfuzz

Fuzzing
pastis-honggfuzz

pastis-broker

Workspace
- corpus / crashes / hangs
- log and client statistics
- CSV of results

4 "\

communication

Pastis-DSE
v

TritonDSE

(exploration of paths)

Triton
(symbolic execution of one path)

DSE
pastis-triton

17/ 29

Research & TritonDSE

Quarkslab

TritonDSE Framework

TritonDSE is developped as a Python library based on a callback
mechanism

Functionalities for a whitebox fuzzer

>

VVvyVvyVYyVvyYYVvYy

program loading 11 cle
input seed scheduling

program exploration & coverage computation
dynamic & symbolic sanitizers

Memory segmentation with permissions

Basic heap allocator with alloc & free primitives
Basic multi-threading support

Multiple libc symbolic stubs

19/ 29

https://github.com/angr/cle

Ongoing Experimentation

Ongoing experiments with TritonDSE and
» custom coverage strategies
» seed scheduling
» slicing
» directed approaches
» seed sharing strategies

Leveraging full disassembly

Some of these analyzes requires manipulating the complete disassembly. We use Quokka
to export the whole IDA disassembly with all metadata.

20/ 29

Fuzzbench Integration

Mean code coverage growth over time

libjpeg-turbo-07-2017 (3h:30m, 1 trials/fuzzer)
—e— tritondse

./.

®
2
s

—

©
&
&

@
w
&
1Y

®
]
=1

Code branch coverage
@
I
&

@
i
G

810

15m 32m 50m 1h:7m 1h:2sm 1h:id2m 2h 2h:il7m 2h:35m 2hiszm 3h:10m 3hi27m
Time (hour:minute)

* The error bands show the 95% confidence interval around the mean code coverage.

= Will enable further benchmarks

21/ 29

Conclusion

» Symbolic Execution is handy for reverse engineering

» Keeping experimenting with SE helps finding way to tackle
new problems encountered

» Keeping experimenting to answer research questions

22/ 29

Thank you !

Contact:
Email: rdavid@quarkslab.com
Phone: +33 158 30 81 51
Site: https://www.quarkslab.com

Quarkslab

Opaque Predicates

Definition:
Ty* — 1 # X
Predicate always evaluating to true
(resp false) 1
Can be based on: ecx,
X . imul ecx,
> arithmetic imul ecx, 7
» data-structure EH Qe &
K imul eax, eax
> pointer cmp ecx, eax
» etc.. jz dead_addr

= Symbolic execution helps proving the unsatisfiability of the dead branch
116, 3

24/ 29

Virtualization

Virtual Machine (VM) defines a custom
instruction set (ISA) with virtual regis- Decoding
ters and memory.

Fetching

Dispatcher

How: The code to obfuscate is translated in
opcode in this ISA, and then evaluated by the
VM in a fetch, decode, dispatch repeat
manner.

Handler 1 Handler 2 Handler 3

Terminator

= Can be defeated by the low interaction between VM code and “real” code [12].

25/ 29

Existing Frameworks

ClusterFuzz [] | OneFuzz [] EnFuzz [] Deepstate [©] | CollabFuzz [17]
Bio: Bio: Bio: Bio: Bio:

> Authors: Google > Author: > Author: Tsinghua > Author: > Author: Vusec
» Base: libfuzzer Microsoft University TrailofBits (TU University)
Used by OSS-Fuzz [8] > Base: AFL, Pros/Cons: > Base: libfuzzer, > Base: AFL,
Radamsa AFL, Honggfuzz, AFL++, QSym,
[link] e support AFL, Eclipser, Angora AFLfast, Fairfuzz,
libfuzzer, aflfast, Pros/C. . Honggfuzz,
scale intefuzz, fairuzz.. [EFIASDER libfuzzer
require an Azure academic tool unified harness
cloud instance a single commit Pros/Cons:
basic seed unmaintained Based on
[link] sharing require fuzzer Docker
restart on new message
seed exchange with
[link] ZeroMQ
[link]
[link]

26/ 29

https://google.github.io/clusterfuz
https://github.com/microsoft/onefuzz
https://github.com/enfuzz/enfuzz
https://github.com/trailofbits/deepstate
https://github.com/vusec/collabfuzz

References |

@ S. BARDIN, R. DAVID, AND J. MARION, Backward-bounded DSE: targeting infeasibility questions on obfuscated codes, in 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, 2017, pp. 633-651.

@ Y. CHEN, Y. JIANG, F. MA, J. LIANG, M. WANG, C. ZHOU, X. JIAO, AND Z. SU, Enfuzz: Ensemble fuzzing with seed
synchronization among diverse fuzzers, in 28th USENIX Security Symposium, Santa Clara, CA, USA, 2019, USENIX
Association, 2019, pp. 1967-1983.

[site].

C. S. COLLBERG, C. D. THOMBORSON, AND D. Low, Manufacturing cheap, resilient, and stealthy opaque constructs, in POPL

’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA,
USA, January 19-21, 1998, D. B. MacQueen and L. Cardelli, eds., ACM, 1998, pp. 184—196.

R. DAVID, Greybox program synthesis: A new approach to attack dataflow obfuscation, Black Hat USA, (2021).
[slides].

R. DAVID, L. CONIGLIO, AND M. CECCATO, Qsynth - a program synthesis based approach for binary code deobfuscation,
(2020).
http://archive.bar/pdfs/bar2020-preprint9.pdf.

P. GOODMAN, G. GRIECO, AND A. GROCE, Tutorial: Deepstate: Bringing vulnerability detection tools into the development
cycle, in 2018 IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October 2, 2018, IEEE
Computer Society, 2018, pp. 130-131.

) &)) &

GOOGLE, Clusterfuzz - scalable fuzzing infrastructure.
[code].

27/ 29

https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
http://i.blackhat.com/USA21/Wednesday-Handouts/US-21-David-Greybox-Program-Synthesis.pdf
http://archive.bar/pdfs/bar2020-preprint9.pdf
https://google.github.io/clusterfuzz

References Il

B
B
B
B
B
B
B

, Oss-fuzz - continuous fuzzing for open source software.
https://github.com/google/oss-fuzz[code].

MICROSOFT, Onefuzz - a self-hosted fuzzing-as-a-service platform, 2021.

[code].

S. OSTERLUND, E. GERETTO, A. JEMMETT, E. GULER, P. GORz, T. HOLZ, C. GIUFFRIDA, AND H. BOS, Collabfuzz: A framework for
collaborative fuzzing, in Proceedings of the 14th European Workshop on Systems Security, EuroSec '21, 2021, p. 1-7.

R. T. QUARKSLAB, Lief - library to instrument executable formats.
[sitel, April 2017.

J. SALWAN, S. BARDIN, AND M. POTET, Symbolic deobfuscation: From virtualized code back to the original, in Detection of

Intrusions and Malware, and Vulnerability Assessment - 15th International Conference, DIMVA 2018, Saclay, France, June
28-29, 2018, Proceedings, 2018, pp. 372-392.

R. SASNAUSKAS, Y. CHEN, P. COLLINGBOURNE, J. KETEMA, J. TANEJA, AND J. REGEHR, Souper: A synthesizing superoptimizer,
CoRR, abs/1711.04422 (2017).

N. STEPHENS, J. GROSEN, C. SALLS, A. DUTCHER, R. WANG, J. CORBETTA, Y. SHOSHITAISHVILI, C. KRUEGEL, AND G. VIGNA,

Driller: Augmenting fuzzing through selective symbolic execution, in 23rd Annual Network and Distributed System Security
Symposium, NDSS, 2016.

28/ 29

https://github.com/google/oss-fuzz
https://github.com/microsoft/onefuzz
https://lief.quarkslab.com/

References lll

@ R. THOMAS, Droidguard: A deep dive into safetynet, in Symposium sur la sécurité des technologies de I'information et des
communications, SSTIC, France, Rennes, June 2-5 2022, SSTIC, 2015, pp. 31-54.
[slides].

@ R. TOFIGHI-SHIRAZI, |. M. ASAVOAE, P. ELBAZ-VINCENT, AND T. LE, Defeating opaque predicates statically through machine

learning and binary analysis, in Proceedings of the 3rd ACM Workshop on Software Protection, SPRO@CCS 2019, London,
Uk, November 15, 2019, P. Falcarin and M. Zunke, eds., ACM, 2019, pp. 3-14.

@ I. YUN, S. LEE, M. XU, Y. JANG, AND T. KIM, QSYM : A practical concolic execution engine tailored for hybrid fuzzing, in 27th

USENIX Security Symposium (USENIX Security 18), Baltimore, MD, 2018, USENIX Association, pp. 745-761.
[site].

29/ 29

https://www.sstic.org/media/SSTIC2022/SSTIC-actes/droidguard_a_deep_dive_into_safetynet/SSTIC2022-Slides-droidguard_a_deep_dive_into_safetynet-thomas.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

	Use-Case #1 Obfuscation Assessment
	Use-Case #2 Program Exploration
	Research & TritonDSE

