
Symbolic Execution the Swiss-Knife of the Reverse
Engineer Toolbox

KLEE Workshop – September 16-17th, 2022

Robin David Quarkslab <rdavid@quarkslab.com>
Christian Heitman Quarkslab <cheitman@quarkslab.com>
Richard Abou Chaaya Quarkslab <rabouchaaya@quarkslab.com>

Agenda

Part 1. Obfuscation

Part 2. Exploration / Fuzzing

Part 3. Research & TritonDSE

2/ 29

Use-Case #1
Obfuscation Assessment

Obfuscation Assessment

Use-Case #1
Assessing obfuscation strength

(its ability to protect data, keys that it needs to protect)

Obfuscation in the industry

▶ Banks, payment solutions
▶ Mobiles applications (IP protection)

▶ DRM, Video-on-Demand
▶ etc.

⇒ Multiple existing work to attack opaque predicates [1, 16, 3] or virtualization [12]

3/ 29

Mixed-Boolean Arithmetic

MBA (Mixed Boolean Arithmetic) diversify simple operations by mixing them
with arithmetic and bitwise operations that are semantically equivalent.

⇒ Can be defeated with: Symbolic Execution + Program Synthesis [4, 5].
(other SMT-based approaches have been proposed [13])

4/ 29

SE for Synthesis

⇒ Use SE as a mean of extracting data-flow expressions of registers or memory locations
in the program.

5/ 29

Dataflow Expressions Synthesis

Simplification Algorithm

AST traversal using different strategies to
trying simplifying opportunistically sub-ASTs.

I/O Oracle Synthesis

Evaluating expressions on a set of inputs. If it
expresses the same behavior than some
smaller pre-computed expressions replaces it
(assume they are semantically equivalent).

⇒ SMT can be used to prove equivalence between both input and synthesized expression.
6/ 29

MBA: Concrete use-cases

Figure: MBA extracted from messaging application

Other concrete usages:
▶ Off-the-shelf obfuscators (eg: all LLVM-based obfuscators)

▶ Used in Android SafetyNet [15]

Conclusion: SE very useful for obfuscation to manipulate the semantic which is the only
thing that must be preserved by obfuscation.

7/ 29

Use-Case #2
Program Exploration

Program Exploration

Use-Case #2
In support of fuzzing to assess static analysis alerts

Industry Problem
Many companies uses static analyzer for security or compliance before

shipping their code (or requires sub-contractors to do so)

Underlying Problem

⇒ Static analyzers usually yield many alerts for which it is difficult
to discriminate true flaws and false positives.

8/ 29

Program Exploration

Use-Case #2
In support of fuzzing to assess static analysis alerts

Industry Problem
Many companies uses static analyzer for security or compliance before

shipping their code (or requires sub-contractors to do so)

Underlying Problem

⇒ Static analyzers usually yield many alerts for which it is difficult
to discriminate true flaws and false positives.

8/ 29

Program Exploration

Use-Case #2
In support of fuzzing to assess static analysis alerts

Industry Problem
Many companies uses static analyzer for security or compliance before

shipping their code (or requires sub-contractors to do so)

Underlying Problem

⇒ Static analyzers usually yield many alerts for which it is difficult
to discriminate true flaws and false positives.

8/ 29

Static Analysis

Features

▶ Langages: C, C++, Java,
▶ Checkers:

▶ 300 checkers C/C++
▶ 91 community checkers AUTOSAR
▶ 24 CERT community checkers
▶ ...

Coding standard (“checkers”)

▶ AUTOSAR
▶ CWE for C# and Java
▶ Joint Strike Fighter Air Vehicle C++
▶ MISRA
▶ PCI DSS

⇒ Usually de-facto standard for compliance in some automotive, industrial systems.

9/ 29

https://docs.roguewave.com/en/klocwork/2021/candccheckerreference
https://docs.roguewave.com/en/klocwork/2021/nolinksautosarccheckerreference
https://docs.roguewave.com/en/klocwork/2021/certcommunitycandccheckerreference

Klocwork Report

(they have not discovered SARIF format yet)

10/ 29

Intrinsic Functions Insertion

Klocwork report (HTML)

[{ "kid": 5116,
 "params": ["buffer", "2049"],
 "taxonomy": "C and C++",
 "severity": "Critical",
 "file": "/home/user/src/http/http_client.c",
 "line": 577,
 "function": "httpClientSetHost",
 "raw_line": "Array 'buffer' of size 2049
 may use index value(s) 0..2062",
 "code": "ABV_GENERAL"
 },
 ...]

Klocwork report (JSON)

kl_report_to_json

kl_alert_inserter
__klocwork_alert_placeholder(8, "SV_STRBO_BOUND_COPY_OVERFLOW", sizeof(conn->request), token, 71);
strncpy(conn->request, token, n);

Advantages

▶ allows retrieving precisely the alert location in resulting binary (also encompass inlining..)
▶ body on __klocwork_alert_placeholder print on stdout alert ID

(intrinsic should be familiar to KLEE users with klee_assume etc..)
11/ 29

The Approach

Combining Fuzzing and Symbolic Execution
to

cover the alerts and to check if they are true positives

Fuzzing [blazingly fast]
▶ Coverage: by parsing stdout
▶ Validation: in case of crash → last intrinsic covered

DSE [might cover deeper states]
▶ Coverage: detect the call to the intrinsic
▶ Validation: dedicated runtime or symbolic checkers (sanitizers)

⇒ Corollary issue: How combining them efficiently ?

12/ 29

Symbolic Checker SV_STRBO_BOUND_COPY_OVERFLOW

__klocwork_alert_placeholder(8, "SV_[..]_OVERFLOW", sizeof(con->request), src, n);
strncpy(con->request, src, n);

def handle_svstrbo_bound_copy_ov(se) -> bool: # se is symbolic state
dst_size = se.get_argument_value(2)
ptr_inpt = se.get_argument_value(3)
n, sym_n = se.get_full_argument(4) # both concrete and symbolic value
Runtime check
if n >= dst_size and len(se.get_memory_string(ptr_inpt)) >= dst_size:

return True # violation triggered
Symbolic check
predicate = [sym.get_path_constraints(), sym_n > dst_size]
For each memory cell, try to proof that they can be different from \0
for i in range(dst_size + 1): # +1 in order to proof that we can at least do an off-by-one

sym_cell = sym.read_symbolic_memory_byte(ptr_inpt + i)
predicate.append(cell != 0)

st, model = sym.solve(predicate)
if st == SolverStatus.SAT:

crash_seed = mk_new_crashing_seed(se, model)
return True

⇒ Can flag input as “crashing” even though the harness is not crashing per-se.
13/ 29

Complete Workflow

Source
code

code
harnessing

Creation of the
harness

Manual

▶ Indeed can’t prove an alerts to be false negative

▶ Helps the analyst focusing on remaining uncovered, unvalidated alerts

14/ 29

Complete Workflow

Source
code

code
harnessing SAST Alerts

report
intrinsic
insertion

Creation of the
harness

Manual

Static Analysis

Semi-automated

(manual checking intrinsic insertion)

▶ Indeed can’t prove an alerts to be false negative

▶ Helps the analyst focusing on remaining uncovered, unvalidated alerts

14/ 29

Complete Workflow

Source
code

code
harnessing SAST Alerts

report
intrinsic
insertion

DSE

Report
- coverage
- validation

fuzzingcompilation
for fuzzer

compilation
for DSE

Creation of the
harness

Manual

Static Analysis

Semi-automated

(manual checking intrinsic insertion)
Dynamic Testing

Fully-automated

▶ Indeed can’t prove an alerts to be false negative

▶ Helps the analyst focusing on remaining uncovered, unvalidated alerts

14/ 29

Complete Workflow

Source
code

code
harnessing SAST Alerts

report
intrinsic
insertion

DSE

Report
- coverage
- validation

fuzzingcompilation
for fuzzer

compilation
for DSE

Creation of the
harness

Manual

Static Analysis

Semi-automated

(manual checking intrinsic insertion)
Dynamic Testing

Fully-automated

▶ Indeed can’t prove an alerts to be false negative

▶ Helps the analyst focusing on remaining uncovered, unvalidated alerts

14/ 29

Ensemble Fuzzing

Definition

Approach aiming at making heterogenous testing tools to collaborate to
fuzz a given target. (broad definition of fuzzing)

Rational:
▶ No fuzzer is universally better on every targets
▶ Efficiency depends on the fuzzing approach, coverage, mutation technique etc..

⇒ It might be valuable to combine different test engines
(existing litterature [7, 9, 2, 6, 10])

15/ 29

Our project: PASTIS

Characteristics

▶ written in Python
▶ distributed (network-based)

▶ run engines in parrallel
▶ enable adding new fuzzers
▶ DSE: Triton
▶ fuzzing: Honggfuzz, AFL++
▶ replay (ensure replayability)

(pastis is anise-based french liquor)

Used it to fuzz TCP/IP stacks. Found
issues for which some have CVEs
(CVE-2021-26788).

⇒ Designed to work binary-only targets (in this case cannot leverage intrinsic mechanism)

16/ 29

https://blog.quarkslab.com/remote-denial-of-service-on-cyclonetcp-cve-2021-26788.html

PASTIS Architecture

Fuzzing
pastis-honggfuzz

DSE
pastis-triton

Python driver

Honggfuzz

 Pastis-DSE

communication
(libpastis)

communication
(libpastis)

Master
pastis-broker

communication
(libpastis)

execve

Initial Configuration
- binary
- SAST report (klocwork)
- configurations (coverage strategy, etc)

Workspace
- corpus / crashes / hangs
- log and client statistics
- CSV of results

Triton
(symbolic execution of one path)

TritonDSE
(exploration of paths)

1
2
3
4
5

 1. Connection (idle)
 2. Reception of binary (+opts)
 3. Seed exchange (+logs)
 4. Infos of alert validation
 5. Stop

1
2
3

4

5

17/ 29

Demo

18/ 29

Research & TritonDSE

TritonDSE Framework
TritonDSE is developped as a Python library based on a callback

mechanism
(address, instructions, memory, registers, context-switch, new inputs, formular solving etc..)

Functionalities for a whitebox fuzzer

▶ program loading (ELF, based on LIEF [11], and also now cle)

▶ input seed scheduling (customizable)

▶ program exploration & coverage computation
▶ dynamic & symbolic sanitizers (for different vulnerability categories)

▶ Memory segmentation with permissions
▶ Basic heap allocator with alloc & free primitives (customizable)

▶ Basic multi-threading support
▶ Multiple libc symbolic stubs

(will soon be open-sourced)
19/ 29

https://github.com/angr/cle

Ongoing Experimentation

Ongoing experiments with TritonDSE and PASTIS:
▶ custom coverage strategies
▶ seed scheduling
▶ slicing
▶ directed approaches
▶ seed sharing strategies (PASTIS)

Leveraging full disassembly

Some of these analyzes requires manipulating the complete disassembly. We use Quokka
to export the whole IDA disassembly with all metadata. (code & data cross references etc)

(also soon open-source)

20/ 29

Fuzzbench Integration

⇒ Will enable further benchmarks (to compare various strategies & algorithms)

21/ 29

Conclusion

▶ Symbolic Execution is very handy for reverse engineering

▶ Keeping experimenting with SE helps finding way to tackle
new problems encountered (obfuscation, exploring specific targets etc.)

▶ Keeping experimenting to answer research questions (unstuck

fuzzing, reaching a location, ensemble fuzzing combination vs separate run, etc..)

22/ 29

Thank you !
Contact:

Email: rdavid@quarkslab.com

Phone: +33 1 58 30 81 51

Site: https://www.quarkslab.com

Opaque Predicates

Definition:
Predicate always evaluating to true
(resp false) (but for which this property is
difficult to deduce).

Can be based on:
▶ arithmetic
▶ data-structure
▶ pointer (aliasing)
▶ etc..

7y2 − 1 ̸= x2
(hold for any x, y in modular arithmetic)

↓

mov eax, ds:X
mov ecx, ds:Y
imul ecx, ecx
imul ecx, 7
sub ecx, 1
imul eax, eax
cmp ecx, eax
jz <dead_addr>

⇒ Symbolic execution helps proving the unsatisfiability of the dead branch
(now widely studied in litterature [1, 16, 3])

24/ 29

Virtualization

Definition:
Virtual Machine (VM) defines a custom
instruction set (ISA) with virtual regis-
ters and memory.

How: The code to obfuscate is translated in
opcode in this ISA, and then evaluated by the
VM in a fetch, decode, dispatch repeat
manner.

Fetching

Decoding

Dispatcher

Handler 2

Terminator

Handler 3Handler 1

Bytecodes - Custom ISA

⇒ Can be defeated by the low interaction between VM code and “real” code [12].

25/ 29

Existing Frameworks

ClusterFuzz [7]
Bio:

▶ Authors: Google
▶ Base: libfuzzer

Used by OSS-Fuzz [8]

[link]

OneFuzz [9]
Bio:

▶ Author:
Microsoft

▶ Base: AFL,
Radamsa

Pros/Cons:

▶ scale
▶ require an Azure

cloud instance

[link]

EnFuzz [2]
Bio:

▶ Author: Tsinghua
University

Pros/Cons:

▶ support AFL,
libfuzzer, aflfast,
intefuzz, fairuzz..

▶ academic tool
▶ a single commit
▶ basic seed

sharing (local
directory)

[link]

Deepstate [6]
Bio:

▶ Author:
TrailofBits

▶ Base: libfuzzer,
AFL, Honggfuzz,
Eclipser, Angora

Pros/Cons:

▶ unified harness
(GTest like)

▶ unmaintained
▶ require fuzzer

restart on new
seed

[link]

CollabFuzz [10]
Bio:

▶ Author: Vusec
(TU University)

▶ Base: AFL,
AFL++, QSym,
AFLfast, Fairfuzz,
Honggfuzz,
libfuzzer

Pros/Cons:

▶ Based on
Docker

▶ message
exchange with
ZeroMQ

[link]

26/ 29

https://google.github.io/clusterfuz
https://github.com/microsoft/onefuzz
https://github.com/enfuzz/enfuzz
https://github.com/trailofbits/deepstate
https://github.com/vusec/collabfuzz

References I

S. BARDIN, R. DAVID, AND J. MARION, Backward-bounded DSE: targeting infeasibility questions on obfuscated codes, in 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, 2017, pp. 633–651.

Y. CHEN, Y. JIANG, F. MA, J. LIANG, M. WANG, C. ZHOU, X. JIAO, AND Z. SU, Enfuzz: Ensemble fuzzing with seed
synchronization among diverse fuzzers, in 28th USENIX Security Symposium, Santa Clara, CA, USA, 2019, USENIX
Association, 2019, pp. 1967–1983.
[site].

C. S. COLLBERG, C. D. THOMBORSON, AND D. LOW, Manufacturing cheap, resilient, and stealthy opaque constructs, in POPL
’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA,
USA, January 19-21, 1998, D. B. MacQueen and L. Cardelli, eds., ACM, 1998, pp. 184–196.

R. DAVID, Greybox program synthesis: A new approach to attack dataflow obfuscation, Black Hat USA, (2021).
[slides].

R. DAVID, L. CONIGLIO, AND M. CECCATO, Qsynth - a program synthesis based approach for binary code deobfuscation,
(2020).
http://archive.bar/pdfs/bar2020-preprint9.pdf.

P. GOODMAN, G. GRIECO, AND A. GROCE, Tutorial: Deepstate: Bringing vulnerability detection tools into the development
cycle, in 2018 IEEE Cybersecurity Development, SecDev 2018, Cambridge, MA, USA, September 30 - October 2, 2018, IEEE
Computer Society, 2018, pp. 130–131.

GOOGLE, Clusterfuzz - scalable fuzzing infrastructure.
[code].

27/ 29

https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
http://i.blackhat.com/USA21/Wednesday-Handouts/US-21-David-Greybox-Program-Synthesis.pdf
http://archive.bar/pdfs/bar2020-preprint9.pdf
https://google.github.io/clusterfuzz

References II

, Oss-fuzz - continuous fuzzing for open source software.
https://github.com/google/oss-fuzz[code].

MICROSOFT, Onefuzz - a self-hosted fuzzing-as-a-service platform, 2021.
[code].

S. ÖSTERLUND, E. GERETTO, A. JEMMETT, E. GÜLER, P. GÖRZ, T. HOLZ, C. GIUFFRIDA, AND H. BOS, Collabfuzz: A framework for
collaborative fuzzing, in Proceedings of the 14th European Workshop on Systems Security, EuroSec ’21, 2021, p. 1–7.

R. T. QUARKSLAB, Lief - library to instrument executable formats.
[site], April 2017.

J. SALWAN, S. BARDIN, AND M. POTET, Symbolic deobfuscation: From virtualized code back to the original, in Detection of
Intrusions and Malware, and Vulnerability Assessment - 15th International Conference, DIMVA 2018, Saclay, France, June
28-29, 2018, Proceedings, 2018, pp. 372–392.

R. SASNAUSKAS, Y. CHEN, P. COLLINGBOURNE, J. KETEMA, J. TANEJA, AND J. REGEHR, Souper: A synthesizing superoptimizer,
CoRR, abs/1711.04422 (2017).

N. STEPHENS, J. GROSEN, C. SALLS, A. DUTCHER, R. WANG, J. CORBETTA, Y. SHOSHITAISHVILI, C. KRUEGEL, AND G. VIGNA,
Driller: Augmenting fuzzing through selective symbolic execution, in 23rd Annual Network and Distributed System Security
Symposium, NDSS, 2016.

28/ 29

https://github.com/google/oss-fuzz
https://github.com/microsoft/onefuzz
https://lief.quarkslab.com/

References III

R. THOMAS, Droidguard: A deep dive into safetynet, in Symposium sur la sécurité des technologies de l’information et des
communications, SSTIC, France, Rennes, June 2-5 2022, SSTIC, 2015, pp. 31–54.
[slides].

R. TOFIGHI-SHIRAZI, I. M. ASAVOAE, P. ELBAZ-VINCENT, AND T. LE, Defeating opaque predicates statically through machine
learning and binary analysis, in Proceedings of the 3rd ACM Workshop on Software Protection, SPRO@CCS 2019, London,
Uk, November 15, 2019, P. Falcarin and M. Zunke, eds., ACM, 2019, pp. 3–14.

I. YUN, S. LEE, M. XU, Y. JANG, AND T. KIM, QSYM : A practical concolic execution engine tailored for hybrid fuzzing, in 27th
USENIX Security Symposium (USENIX Security 18), Baltimore, MD, 2018, USENIX Association, pp. 745–761.
[site].

29/ 29

https://www.sstic.org/media/SSTIC2022/SSTIC-actes/droidguard_a_deep_dive_into_safetynet/SSTIC2022-Slides-droidguard_a_deep_dive_into_safetynet-thomas.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

	Use-Case #1 Obfuscation Assessment
	Use-Case #2 Program Exploration
	Research & TritonDSE

