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Use-Case #1
Obfuscation Assessment



Obfuscation Assessment

Use-Case #1
Assessing obfuscation strength

(its ability to protect data, keys that it needs to protect)

Obfuscation in the industry

▶ Banks, payment solutions
▶ Mobiles applications (IP protection)

▶ DRM, Video-on-Demand
▶ etc.

⇒ Multiple existing work to attack opaque predicates [1, 16, 3] or virtualization [12]
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Mixed-Boolean Arithmetic

MBA (Mixed Boolean Arithmetic) diversify simple operations by mixing them
with arithmetic and bitwise operations that are semantically equivalent.

⇒ Can be defeated with: Symbolic Execution + Program Synthesis [4, 5].
(other SMT-based approaches have been proposed [13])
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SE for Synthesis

⇒ Use SE as a mean of extracting data-flow expressions of registers or memory locations
in the program.
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Dataflow Expressions Synthesis

Simplification Algorithm

AST traversal using different strategies to
trying simplifying opportunistically sub-ASTs.

I/O Oracle Synthesis

Evaluating expressions on a set of inputs. If it
expresses the same behavior than some
smaller pre-computed expressions replaces it
(assume they are semantically equivalent).

⇒ SMT can be used to prove equivalence between both input and synthesized expression.
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MBA: Concrete use-cases

Figure: MBA extracted from messaging application

Other concrete usages:
▶ Off-the-shelf obfuscators (eg: all LLVM-based obfuscators)

▶ Used in Android SafetyNet [15]

Conclusion: SE very useful for obfuscation to manipulate the semantic which is the only
thing that must be preserved by obfuscation.
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Use-Case #2
Program Exploration



Program Exploration

Use-Case #2
In support of fuzzing to assess static analysis alerts

Industry Problem
Many companies uses static analyzer for security or compliance before

shipping their code (or requires sub-contractors to do so)

Underlying Problem

⇒ Static analyzers usually yield many alerts for which it is difficult
to discriminate true flaws and false positives.
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Static Analysis

Features

▶ Langages: C, C++, Java,
▶ Checkers:

▶ 300 checkers C/C++
▶ 91 community checkers AUTOSAR
▶ 24 CERT community checkers
▶ ...

Coding standard (“checkers”)

▶ AUTOSAR
▶ CWE for C# and Java
▶ Joint Strike Fighter Air Vehicle C++
▶ MISRA
▶ PCI DSS

⇒ Usually de-facto standard for compliance in some automotive, industrial systems.
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https://docs.roguewave.com/en/klocwork/2021/candccheckerreference
https://docs.roguewave.com/en/klocwork/2021/nolinksautosarccheckerreference
https://docs.roguewave.com/en/klocwork/2021/certcommunitycandccheckerreference


Klocwork Report

(they have not discovered SARIF format yet)
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Intrinsic Functions Insertion

Klocwork report (HTML)

[{ "kid": 5116,
   "params": ["buffer", "2049"],
   "taxonomy": "C and C++",
   "severity": "Critical",
   "file": "/home/user/src/http/http_client.c",
   "line": 577,
   "function": "httpClientSetHost",
   "raw_line": "Array 'buffer' of size 2049
                may use index value(s) 0..2062",
   "code": "ABV_GENERAL"
 },
  ...]

Klocwork report (JSON)

kl_report_to_json

kl_alert_inserter
__klocwork_alert_placeholder(8, "SV_STRBO_BOUND_COPY_OVERFLOW", sizeof(conn->request), token, 71);
strncpy(conn->request, token, n);

Advantages

▶ allows retrieving precisely the alert location in resulting binary (also encompass inlining..)
▶ body on __klocwork_alert_placeholder print on stdout alert ID

(intrinsic should be familiar to KLEE users with klee_assume etc..)
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The Approach

Combining Fuzzing and Symbolic Execution
to

cover the alerts and to check if they are true positives

Fuzzing [blazingly fast]
▶ Coverage: by parsing stdout
▶ Validation: in case of crash → last intrinsic covered

DSE [might cover deeper states]
▶ Coverage: detect the call to the intrinsic
▶ Validation: dedicated runtime or symbolic checkers (sanitizers)

⇒ Corollary issue: How combining them efficiently ?
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Symbolic Checker SV_STRBO_BOUND_COPY_OVERFLOW

__klocwork_alert_placeholder(8, "SV_[..]_OVERFLOW", sizeof(con->request), src, n);
strncpy(con->request, src, n);

def handle_svstrbo_bound_copy_ov(se) -> bool: # se is symbolic state
dst_size = se.get_argument_value(2)
ptr_inpt = se.get_argument_value(3)
n, sym_n = se.get_full_argument(4) # both concrete and symbolic value
# Runtime check
if n >= dst_size and len(se.get_memory_string(ptr_inpt)) >= dst_size:

return True # violation triggered
# Symbolic check
predicate = [sym.get_path_constraints(), sym_n > dst_size]
# For each memory cell, try to proof that they can be different from \0
for i in range(dst_size + 1): # +1 in order to proof that we can at least do an off-by-one

sym_cell = sym.read_symbolic_memory_byte(ptr_inpt + i)
predicate.append(cell != 0)

st, model = sym.solve(predicate)
if st == SolverStatus.SAT:

crash_seed = mk_new_crashing_seed(se, model)
return True

⇒ Can flag input as “crashing” even though the harness is not crashing per-se.
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Complete Workflow

Source 
code

code 
harnessing

Creation of the
harness 

Manual

▶ Indeed can’t prove an alerts to be false negative

▶ Helps the analyst focusing on remaining uncovered, unvalidated alerts
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Ensemble Fuzzing

Definition

Approach aiming at making heterogenous testing tools to collaborate to
fuzz a given target. (broad definition of fuzzing)

Rational:
▶ No fuzzer is universally better on every targets
▶ Efficiency depends on the fuzzing approach, coverage, mutation technique etc..

⇒ It might be valuable to combine different test engines
(existing litterature [7, 9, 2, 6, 10])
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Our project: PASTIS

Characteristics

▶ written in Python
▶ distributed (network-based)

▶ run engines in parrallel
▶ enable adding new fuzzers
▶ DSE: Triton
▶ fuzzing: Honggfuzz, AFL++
▶ replay (ensure replayability)

(pastis is anise-based french liquor)

Used it to fuzz TCP/IP stacks. Found
issues for which some have CVEs
(CVE-2021-26788).

⇒ Designed to work binary-only targets (in this case cannot leverage intrinsic mechanism)
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https://blog.quarkslab.com/remote-denial-of-service-on-cyclonetcp-cve-2021-26788.html


PASTIS Architecture

Fuzzing 
pastis-honggfuzz

DSE 
pastis-triton

Python driver

Honggfuzz 

 Pastis-DSE 

communication 
(libpastis)

communication 
(libpastis)

Master 
pastis-broker

communication 
(libpastis)

execve

Initial Configuration
- binary 
- SAST report (klocwork) 
- configurations (coverage strategy, etc) 

Workspace
- corpus / crashes / hangs 
- log and client statistics 
- CSV of results 

Triton 
(symbolic execution of one path)

TritonDSE 
(exploration of paths)

1
2
3
4
5

 1. Connection (idle) 
 2. Reception of binary (+opts) 
 3. Seed exchange (+logs) 
 4. Infos of alert validation 
 5. Stop 

1
2
3

4

5
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Demo
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Research & TritonDSE



TritonDSE Framework
TritonDSE is developped as a Python library based on a callback

mechanism
(address, instructions, memory, registers, context-switch, new inputs, formular solving etc..)

Functionalities for a whitebox fuzzer

▶ program loading (ELF, based on LIEF [11], and also now cle)

▶ input seed scheduling (customizable)

▶ program exploration & coverage computation
▶ dynamic & symbolic sanitizers (for different vulnerability categories)

▶ Memory segmentation with permissions
▶ Basic heap allocator with alloc & free primitives (customizable)

▶ Basic multi-threading support
▶ Multiple libc symbolic stubs

(will soon be open-sourced)
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Ongoing Experimentation

Ongoing experiments with TritonDSE and PASTIS:
▶ custom coverage strategies
▶ seed scheduling
▶ slicing
▶ directed approaches
▶ seed sharing strategies (PASTIS)

Leveraging full disassembly

Some of these analyzes requires manipulating the complete disassembly. We use Quokka
to export the whole IDA disassembly with all metadata. (code & data cross references etc)

(also soon open-source)
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Fuzzbench Integration

⇒ Will enable further benchmarks (to compare various strategies & algorithms)
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Conclusion

▶ Symbolic Execution is very handy for reverse engineering

▶ Keeping experimenting with SE helps finding way to tackle
new problems encountered (obfuscation, exploring specific targets etc.)

▶ Keeping experimenting to answer research questions (unstuck

fuzzing, reaching a location, ensemble fuzzing combination vs separate run, etc..)
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Thank you !
Contact:

Email: rdavid@quarkslab.com

Phone: +33 1 58 30 81 51
 

Site: https://www.quarkslab.com



Opaque Predicates

Definition:
Predicate always evaluating to true
(resp false) (but for which this property is
difficult to deduce).

Can be based on:
▶ arithmetic
▶ data-structure
▶ pointer (aliasing)
▶ etc..

7y2 − 1 ̸= x2
(hold for any x, y in modular arithmetic)

↓

mov eax, ds:X
mov ecx, ds:Y
imul ecx, ecx
imul ecx, 7
sub ecx, 1
imul eax, eax
cmp ecx, eax
jz <dead_addr>

⇒ Symbolic execution helps proving the unsatisfiability of the dead branch
(now widely studied in litterature [1, 16, 3])
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Virtualization

Definition:
Virtual Machine (VM) defines a custom
instruction set (ISA) with virtual regis-
ters and memory.

How: The code to obfuscate is translated in
opcode in this ISA, and then evaluated by the
VM in a fetch, decode, dispatch repeat
manner.

Fetching

Decoding

Dispatcher

Handler 2

Terminator

Handler 3Handler 1

Bytecodes - Custom ISA

⇒ Can be defeated by the low interaction between VM code and “real” code [12].
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Existing Frameworks

ClusterFuzz [7]
Bio:

▶ Authors: Google
▶ Base: libfuzzer

Used by OSS-Fuzz [8]

[link]

OneFuzz [9]
Bio:

▶ Author:
Microsoft

▶ Base: AFL,
Radamsa

Pros/Cons:

▶ scale
▶ require an Azure

cloud instance

[link]

EnFuzz [2]
Bio:

▶ Author: Tsinghua
University

Pros/Cons:

▶ support AFL,
libfuzzer, aflfast,
intefuzz, fairuzz..

▶ academic tool
▶ a single commit
▶ basic seed

sharing (local
directory)

[link]

Deepstate [6]
Bio:

▶ Author:
TrailofBits

▶ Base: libfuzzer,
AFL, Honggfuzz,
Eclipser, Angora

Pros/Cons:

▶ unified harness
(GTest like)

▶ unmaintained
▶ require fuzzer

restart on new
seed

[link]

CollabFuzz [10]
Bio:

▶ Author: Vusec
(TU University)

▶ Base: AFL,
AFL++, QSym,
AFLfast, Fairfuzz,
Honggfuzz,
libfuzzer

Pros/Cons:

▶ Based on
Docker

▶ message
exchange with
ZeroMQ

[link]
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https://google.github.io/clusterfuz
https://github.com/microsoft/onefuzz
https://github.com/enfuzz/enfuzz
https://github.com/trailofbits/deepstate
https://github.com/vusec/collabfuzz
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