Toward Optimal MC/DC Test Case Generation

Sangharatna GODBOLEY", Joxan JAFFAR*,
Rasool MAGHAREH*, Arpita DUTTA*

*National University of Singapore, Singapore
{joxan,arpital@comp.nus.edu.sg
*Huawei Canada Research Centre, Canada
rasool.maghareh@huawei.com
TNational Institute of Technology Warangal, India
sanghu@nitw.ac.in

KLEE Workshop - September 2022

Toward Optimal MC/DC Test Case Generation 1/28

Accepted contributions

Accepted Contribution: Technical Track

Sangharatna Godboley, Joxan Jaffar, Rasool Maghareh & Arpita Dutta. “Toward optimal MC/DC test case generation.” In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), pp. 505-516, 2021, Aarhus, Denmark.
https://dl.acm.org/doi/10.1145/3460319.3464841

Accepted Contribution: Poster Track

Sangharatna Godboley, Joxan Jaffar, Rasool Maghareh & Arpita Dutta. “Toward optimal MC/DC test case generation.” In 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), 2021, Aarhus, Denmark.

Artifact Available

Badges obtained: Available, Functional, and Reusable
Sangharatna Godboley, Joxan Jaffar, Rasool Maghareh, & Arpita Dutta. CUSTOM-Interpolation: ISSTA artifact evaluation. In 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), Aarhus, Denmark. Zenodo: http://doi.org/10.5281/zenodo.4771439

@ Website: https://tracer—-x.github.io/
@ Github: https://github.com/tracer-x/

ward Optimal MC/I

https://dl.acm.org/doi/10.1145/3460319.3464841
http://doi.org/10.5281/zenodo.4771439
https://tracer-x.github.io/
https://github.com/tracer-x/

o Introduction

Toward Optimal MC,

What is MC/DC?

Modified Condition/Decision Coverage (MC/DC)

MC/DC is the second strongest coverage criterion for unit testing. It requires linear
number of test cases wrt. the number of atomic conditions present in the program.
MC/DC requires all the following requirements [1]:

@ Each entry and exit point should get invoked.

@ Each predicate takes both possible truth values.

@ Each atomic condition(AC) in a predicate takes both possible truth values.
@ Each AC in a predicate shown as independent.

Why MC/DC?
According to RTCA standard of DO-178B/C[1], it is mandatory to achieve MC/DC
for Level A certificate of safety critical application.

Toward Optimal MC/DC Test Case Generation 4/28

9 Survey

Toward Optimal MC/!

ustrial Practitio

LDRA 10 (58.8%)
13 (81.3%) AutoGen -0 (0%)
BullseyeCoverage [0 (0%)
Cantata |G 4 (23.5%)
CoverageMaster General |0 (0%)
LDRAcover® N1 (5.9%)
McCabe IQ [0 (0%)
1(63%) Java Path finder |0 (0%)

Avionics

Automotive 5(31.3%)

Business
critical Applications

Rapita Systems |0 (0%)
Industrial Controls 1(8.3%) TestwellC++ |0 (0%)
VectorCAST/QA™ 7 (#1.2%)
Embedded Parasoft DTP 1(5.9%)
Medical Devices 1(6.3%) RTRT 1(59%)
ES37 1(5.9%)
’ o Hl internal properly tool 1(59%)
Rallway 2(125%) Rational Test RealTime 1(5.9%)
Cuslomer proprietary 1(5.9%)
0 5 10 1 0 2 4 6 8 10

Figure: Which Domain? Figure: Which automatic tools?

A Survey with Industrial Practitioners

Find missing MC/DC test-cases|
@ VYes (Fully Automated) manually

@ No (Manually)

No (Partially Automated) Use another MC/DC tool 1(7.1%)

Fix the issues in the code 6(42.9%)
Not sure 1(7.1%)
0.0 25 5.0 75 10.0
Figure: Automatic vs . _
Manual! Figure: Which strategy?

Toward Optimal MC,

11 (78.6%)

9 Proposed Idea

Toward Optimal MC/DC Test Case Generation

Proposed Idea

ﬁ predicates -
" | Generator

lvm ir

C' — program

Updated llvm ir
Custom <
Interpolation

LAnnotator

Test Case;_;

Figure: The Overall Architecture of our Framework

Toward Optimal MC/DC Test Case Generation

Sequence Generator (SG)

An Example Predicate: if ((b<0 || c<0) && d < 0){ ... }
SG generates five short-circuited sequences{S; : 101}, {S, : 102}, {S3: 211},

{84 : 212}, and {Ss5 : 220} where 1, 2, 0 represent True, False, and Don’t Care for
the atomic conditions.

Table: Short-circuit Truth Table for Predicate

B | C | D | Output
S| T| X | T T
S| T| X |F F
S| F|T|T T
S| F|T|F F
S| F|F | X F

Toward Optimal MC/DC Test Case Generation 10/28

Resource Annotator

Table: Paths from sequences

c20

ek t1042 Id | Seq | Path
kel S [101 15357
k=k*10+1 S, | 102 1—-3—>F
S| 211 |1—-2—-3—>T
Sy 1212|123 = F
S5 | 220 12— F

assert(k € {101, 102,
211,212,220})

Figure: Annotated CFG for the Predicate

Toward Optimal MC/DC Test Case Generation

Employing DSE

Algorithm 1 Test Case Generation Using DSE
Input: Upd_LLVM_IR,
Output: Test_Suite

1: Test_Suite «+ 0

2: errorPaths «+— Run_DSE (Upd_LLVM_IR)

3: for each errorPath in errorPaths do

4: Input_Values « extractinputValues(errorPath)
5: Test_Suite < Test_Suite + Input_Values

6: end for

Toward Optimal MC/DC Test Case Generation 12/28

Taming the Path Explosion

Figure: Exploration of Symbolic Execution Tree in Non-pruning DSE vs. Pruning DSE

Toward Optimal MC/DC Test Case Generation

Example for Standard Interpolation

xXz21AXx#%16 A
X#13 Ax#28

Consider the program: X1 Ax216

x = 0;
if (bl) x += 12;

if (b2) x += 15; X,13® @xxzs
assert(x != 28); ;

assert(x £ 28)

Figure: SET of the program

Toward Optimal MC/DC Test Case Generation 14/28

Custom Interpolation on top of TracerX [5, 7]

Algorithm 2 Custom Interpolation

function PRE(Annotation , Childint)
if BASE_BUG THEN RETURN (x ¢ SeqVals — {Val. })

END IF
IF BASE_NO_BUG THEN RETURN (x & SeqgVals)

ParentSet «+ {}
FOR EACH s IN Set DO
ParentSet < ParentSet + PRECOND(S , ANNOTATION)
END FOR

11: ParentSet + REMOVENONINTEGRALS(ParentSet)
12: RETURN (x ¢ ParentSet)
13: END FUNCTION
14: FUNCTION JOIN(PATHINT_1 , PATHINT_2)
15: PATHINT_1 = (k & Set_1)
16: PATHINT_2 = (k & Set_2)
17: RETURN (x &€ Set_1U Set_2)
18: END FUNCTION

Toward Optimal MC/DC Test Case Generation 15/28

1:

2:

3

4

g: END IF

: CHILDINT = (x ¢ Set)

7.

8

9

10

Custom Interpolation

ifla<0)b=3;

if(b < 0[|c < 0)&&d < 0) {...}

Figure: The Main Example Program

Toward Optimal MC/DC Test Case Generation 16/28

Custom Interpolation

bzo0
k=k*10+2

ke&{}
c<o
k=k*10+1

czo0
k=k*10+2
k=k* 10

k=k* 10 +1 k=k*10+ 2
211 212

assert(k € {101, 102, 211, 212,220})

Figure: The Execution Tree of the Main Example Program

Toward Optimal MC/I

0 Experimental Evaluation

Toward Optimal MC/DC Test Case Generation 18/28

Experimental Setup

Used Setup:
@ We experimented on Intel Core i7-6700 3.40 GHz Linux Box with 32GB RAM,
and a timeout of 3600 seconds.
@ The raw experimental results can be accessed at [28].
Experimental Evaluation:
@ Main Experiment
e Our Method (CUSTOM) v/s CBMC

© Supplementary Experiment
e No Interpolation (KLEE) and Standard Interpolation v/s CUSTOM Interpolation

Used Data set:
Table: Programs Experimented.

Type psyco | RERS(12-20) | RERS(19-Industry) | zodiac | Total
Numbers 14 181 14 1 210

Toward Optimal MC/DC Test Case Generation 19/28

KLEE v/s Standard Interpolation v/s CUSTOM Interpolation

No Interpolation (KLEE) v/s Standard Interpolation (TracerX)
@ Forward Symbolic Execution to find feasible paths (Similar to KLEE).
@ Intermediate execution states preserved (Unlike KLEE).

@ Half interpolants are generated by backward tracking and Full interpolants
generated by merging half interpolants.

@ Full interpolants used for subsumption at similar program points.

Standard Interpolation (TracerX) v/s CUSTOM Interpolation (Paper’s Contribution)

@ CUSTOM is designed to discover the MC/DC sequences and generate test
cases for those sequences unlike TracerX which is used only in case of safety.

@ Symbolic execution typically stops the path on witnessing a bug. In contrast,
CUSTOM modifies the interpolant and continue the path.

@ In CUSTOM, we generate a weakest precondition (WP) interpolant on the
ghost variable (x) alongside the standard interpolant on the rest of the
variables.

Toward Optimal MC/DC Test Case Generation 20/28

Main Experiment Results

Groups
1 Both CUSTOM and CBMC terminate.
2 CUSTOM terminates, but CBMC does not
3 CBMC terminates, but CUSTOM does not
4 Neither of the tools terminate

Table: Experimented Programs
Groups Group1 | Group2 | Group3 | Group4 | #Total

#Programs 91 71 5 43 210

Table: Main Results (Total 710.4K sequences)

Tool Proved Sequences UnProven Optimal
(Feasible + Infeasible) | Sequences Programs
CBMC 104.7K 605.7K 96/210 (45.71%)
CUSTOM 531.2K 179.2K 162/210 (77.14%)

Toward Optimal MC/DC Test Case Generation 21/28

Main Experiment Results

oo @ CBMC @ CUSTOM @ CBMC @ CUSTOM
1
10000

7500 7500
5000 - . § 5000 - * ° ° 3
.

°
2500 L4

MC/DC Proved Sequences
(1)
°
°

MC/DC UnProven Sequences

2500 | @ 0 & 0‘.‘-"

0 50 100 150 200 0 50 100 150 200

Program Program

Figure: Scatter chart for MC/DC Proved Figure: Scatter chart for MC/DC
Sequences UnProven Sequences

Toward Optimal MC,

Supplementary Experimental Results

A Nolnterpolation 4 Standard Interpolation X CUSTOM Interpolation
4000

3000

2000

Time (Seconds)

1000

Programs

Figure: Comparison of Execution Time in No Interpolation (KLEE) [2], Standard
Interpolation [3] vs. CUSTOM Interpolation

Toward Optimal MC/DC Test Case Generation 23/28

Major Takeaway

Symbolic Execution(SE) is designed to perform either of these two:
@ Bug Finding
© Program Verification
In contrast, we used it to discover MC/DC sequences and generate MC/DC
specific test cases.
@ Our CUSTOM interpolation technique is clever enough to prune the sub trees
which contain already discovered MC/DC sequences.
@ Our algorithm, if it terminates, generates an optimal set of MC/DC test cases.

Toward Optimal MC/DC Test Case Generation 24/28

Q Conclusion

Toward Optimal MC,

Conclusion

@ We have surveyed and found that in industrial practice, automatic MC/DC test
generation is woefully inadequate and most practitioners rely on manual effort.

@ Our algorithm, if terminates, generates an optimal set of MC/DC test cases.

@ We compared CUSTOM against CBMC, the only practical method available
which address large programs.

@ A comprehensive experimental evaluation shows our implementation to
perform at a higher level.

Toward Optimal MC/DC Test Case Generation 26/28

References >> |

0 Kelly J., Hayhurst and Dan S., Veerhusen and John J., Chilenski and Leanna K., Rierson. A Practical Tutorial on Modified Condition/Decision

2]
o
o

Coverage. NASA Langley Technical Report Server (2001).

Cadar, C., Dunbar, D. and Engler, D.R., 2008, December. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for Complex Systems
Programs. In OSDI (Vol. 8, pp. 209-224).

Jaffar J., Murali V., Navas J.A., Santosa A.E. (2012) TRACER: A Symbolic Execution Tool for Verification. In: Madhusudan P., Seshia S.A. (eds)
Computer Aided Verification. CAV 2012. Lecture Notes in Computer Science, vol 7358. Springer, Berlin, Heidelberg

Kroening D., Tautschnig M. (2014) CBMC-C Bounded Model Checker. In: Abraham E., Havelund K. (eds) Tools and Algorithms for the Construction
and Analysis of Systems. TACAS 2014. Lecture Notes in Computer Science, vol 8413. Springer, Berlin, Heidelberg

e Jaffar J., Maghareh R., Godboley S., Ha XL. (2020) TracerX: Dynamic Symbolic Execution with Interpolation (Competition Contribution). In: Wehrheim
H., Cabot J. (eds) Fundamental Approaches to Software Engineering. FASE 2020. Lecture Notes in Computer Science, vol 12076. Springer, Cham

References >> |

e Jaffar J., Godboley S., and Maghareh R. (2019). Optimal MC/DC test case generation. In Proceedings of the 41st International Conference on
Software Engineering: Companion Proceedings (ICSE’19). IEEE Press, 288-289. DOl:https://doi.org/10.1109/ICSE-Companion.2019.00118

o Jaffar J., Maghareh R., Godboley S., Ha XL. (2020) TracerX: Dynamic Symbolic Execution with Interpolation. KLEE 2020 (2nd International KLEE
Workshop on Symbolic Execution) Imperial College London, South Kensington Campus

e SV-COMP Benchmarks: Verification Tasks, https:/github.com/sosy-lab/sv-benchmarks/tree/master/c/psyco, Dec 2017

© RERS: htipiirers-challenge.org/, Jun, 2018

@ Artifact Workbook for CUSTOM:-Interpolation, https://doi.org/10.6084/m9.figshare.13650242.v1

	Introduction
	Survey
	Proposed Idea
	Experimental Evaluation
	Conclusion

