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What is MC/DC?

Modified Condition/Decision Coverage (MC/DC)

MC/DC is the second strongest coverage criterion for unit testing. It requires linear
number of test cases wrt. the number of atomic conditions present in the program.
MC/DC requires all the following requirements [1]:

@ Each entry and exit point should get invoked.

@ Each predicate takes both possible truth values.

@ Each atomic condition(AC) in a predicate takes both possible truth values.
@ Each AC in a predicate shown as independent.

Why MC/DC?
According to RTCA standard of DO-178B/C[1], it is mandatory to achieve MC/DC
for Level A certificate of safety critical application.
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A Survey with Industrial Practitioners
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Proposed Idea
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Figure: The Overall Architecture of our Framework
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Sequence Generator (SG)

An Example Predicate: if ((b<0 || c<0) && d < 0){ ... }
SG generates five short-circuited sequences{S; : 101}, {S, : 102}, {S3: 211},

{84 : 212}, and {Ss5 : 220} where 1, 2, 0 represent True, False, and Don’t Care for
the atomic conditions.

Table: Short-circuit Truth Table for Predicate

B | C | D | Output
S| T| X | T T
S| T| X |F F
S| F|T|T T
S| F|T|F F
S| F|F | X F
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Resource Annotator

Table: Paths from sequences

c20

ek t1042 Id | Seq | Path
kel S [ 101 15357
k=k*10+1 S, | 102 1—-3—>F
S| 211 |1—-2—-3—>T
Sy 1212|123 = F
S5 | 220 12— F

assert( k € {101, 102,
211,212,220})

Figure: Annotated CFG for the Predicate
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Employing DSE

Algorithm 1 Test Case Generation Using DSE
Input: Upd_LLVM_IR,
Output: Test_Suite

1: Test_Suite «+ 0

2: errorPaths «+— Run_DSE (Upd_LLVM_IR)

3: for each errorPath in errorPaths do

4: Input_Values « extractinputValues(errorPath)
5: Test_Suite < Test_Suite + Input_Values

6: end for
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Taming the Path Explosion

Figure: Exploration of Symbolic Execution Tree in Non-pruning DSE vs. Pruning DSE
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Example for Standard Interpolation

xXz21AXx#%16 A
X#13 Ax#28

Consider the program: X1 Ax216

x = 0;
if (bl) x += 12;

if (b2) x += 15; X,13® @xxzs
assert(x != 28); ;

assert( x £ 28)

Figure: SET of the program
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Custom Interpolation on top of TracerX [5, 7]

Algorithm 2 Custom Interpolation

function PRE(Annotation , Childint)
if BASE_BUG THEN RETURN (x ¢ SeqVals — {Val. })

END IF
IF BASE_NO_BUG THEN RETURN (x & SeqgVals)

ParentSet «+ {}
FOR EACH s IN Set DO
ParentSet < ParentSet + PRECOND(S , ANNOTATION)
END FOR

11: ParentSet + REMOVENONINTEGRALS(ParentSet)
12: RETURN (x ¢ ParentSet)
13: END FUNCTION
14: FUNCTION JOIN(PATHINT_1 , PATHINT_2)
15: PATHINT_1 = (k & Set_1)
16: PATHINT_2 = (k & Set_2)
17: RETURN (x &€ Set_1U Set_2)
18: END FUNCTION
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Custom Interpolation

ifla<0)b=3;

if(b < 0[|c < 0)&&d < 0) {...}

Figure: The Main Example Program
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Custom Interpolation

bzo0
k=k*10+2

ke&{}
c<o
k=k*10+1

czo0
k=k*10+2
k=k* 10

k=k* 10 +1 k=k*10+ 2
211 212

assert( k € {101, 102, 211, 212,220})

Figure: The Execution Tree of the Main Example Program
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0 Experimental Evaluation
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Experimental Setup

Used Setup:
@ We experimented on Intel Core i7-6700 3.40 GHz Linux Box with 32GB RAM,
and a timeout of 3600 seconds.
@ The raw experimental results can be accessed at [28].
Experimental Evaluation:
@ Main Experiment
e Our Method (CUSTOM) v/s CBMC

© Supplementary Experiment
e No Interpolation (KLEE) and Standard Interpolation v/s CUSTOM Interpolation

Used Data set:
Table: Programs Experimented.

Type psyco | RERS(12-20) | RERS(19-Industry) | zodiac | Total
Numbers 14 181 14 1 210
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KLEE v/s Standard Interpolation v/s CUSTOM Interpolation

No Interpolation (KLEE) v/s Standard Interpolation (TracerX)
@ Forward Symbolic Execution to find feasible paths (Similar to KLEE).
@ Intermediate execution states preserved (Unlike KLEE).

@ Half interpolants are generated by backward tracking and Full interpolants
generated by merging half interpolants.

@ Full interpolants used for subsumption at similar program points.

Standard Interpolation (TracerX) v/s CUSTOM Interpolation (Paper’s Contribution)

@ CUSTOM is designed to discover the MC/DC sequences and generate test
cases for those sequences unlike TracerX which is used only in case of safety.

@ Symbolic execution typically stops the path on witnessing a bug. In contrast,
CUSTOM modifies the interpolant and continue the path.

@ In CUSTOM, we generate a weakest precondition (WP) interpolant on the
ghost variable (x) alongside the standard interpolant on the rest of the
variables.
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Main Experiment Results

Groups
1 Both CUSTOM and CBMC terminate.
2 CUSTOM terminates, but CBMC does not
3 CBMC terminates, but CUSTOM does not
4 Neither of the tools terminate

Table: Experimented Programs
Groups Group1 | Group2 | Group3 | Group4 | #Total

#Programs 91 71 5 43 210

Table: Main Results (Total 710.4K sequences)

Tool Proved Sequences UnProven Optimal
(Feasible + Infeasible) | Sequences Programs
CBMC 104.7K 605.7K 96/210 (45.71%)
CUSTOM 531.2K 179.2K 162/210 (77.14%)
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Main Experiment Results
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Supplementary Experimental Results

A Nolnterpolation 4 Standard Interpolation X CUSTOM Interpolation
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Figure: Comparison of Execution Time in No Interpolation (KLEE) [2], Standard
Interpolation [3] vs. CUSTOM Interpolation
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Major Takeaway

Symbolic Execution(SE) is designed to perform either of these two:
@ Bug Finding
© Program Verification
In contrast, we used it to discover MC/DC sequences and generate MC/DC
specific test cases.
@ Our CUSTOM interpolation technique is clever enough to prune the sub trees
which contain already discovered MC/DC sequences.
@ Our algorithm, if it terminates, generates an optimal set of MC/DC test cases.
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Q Conclusion
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Conclusion

@ We have surveyed and found that in industrial practice, automatic MC/DC test
generation is woefully inadequate and most practitioners rely on manual effort.

@ Our algorithm, if terminates, generates an optimal set of MC/DC test cases.

@ We compared CUSTOM against CBMC, the only practical method available
which address large programs.

@ A comprehensive experimental evaluation shows our implementation to
perform at a higher level.
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