
1KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Can symbolic execution be a productivity 
multiplier for human bug-finders?
Peter Goodman

September 15-16th, 2022



2KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Peter Goodman
● Staff engineer at Trail of Bits

○ Email: peter@trailofbits.com

○ Twitter: @peter_a_goodman; the “a” is for “amazing”

● Talk to me about:

○ Static or dynamic binary translation
■ Remill, Anvill, VMill, McSema, GRR, microx, Granary, DynamoRIO, etc.

○ Static or dynamic program analysis
■ PASTA, Magnifier, Dr. Lojekyll Datalog compiler, DeepState, KLEE-native

○ LLVM, MLIR
■ Rellic, VAST

Hi everyone

https://www.trailofbits.com/
mailto:peter@trailofbits.com
https://twitter.com/peter_a_goodman


3KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Humans are at the center of productivity
● What makes a tool a productivity multiplier?

○ How do today’s tools measure up?

● What KLEE can improve upon today to be ready for tomorrow
○ LLVM’s runtime is its biggest strength and missed opportunity
○ LLVM is KLEE’s domain, but not the domain of bug-finders

● The future is multi-level analyses with MLIR
○ Bug-finding tools should communicate with bug-finders in their domain of interest
○ Bug-finding tools should operate on the best-fit domain(s) for their analyses
○ VAST is making this future happen with of MLIR dialects, from high level, down to LLVM

Where today’s tools stand, how KLEE can improve, and why MLIR is the future

https://github.com/trailofbits/vast


4KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Three pillars of productivity tools



5KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bug-finding systems should be…
● Composable

○ Internal: combine existing results to derive new results
○ External: outputs can be used as inputs to other tools, tool fits into a larger workflow

● Comprehensive
○ Zero false-negatives at targeted bug class
○ Known presence of false-negatives can be mitigated by huge upside

● Transparent
○ Tool complexity often leads to unpredictable outcomes
○ Behavior should be predictable, results should be explainable, limitations understandable
○ Context is important: “this free is bad” is unsatisfactory

What makes a bug-finding system a productivity multiplier?



6KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bug-finding systems should be…
● Composable

○ Internal: combine existing results to derive new results
○ External: outputs can be used as inputs to other tools, tool fits into a larger workflow

● Comprehensive
○ Zero false-negatives at targeted bug class
○ Known presence of false-negatives can be mitigated by huge upside

● Transparent
○ Tool complexity often leads to unpredictable outcomes
○ Behavior should be predictable, results should be explainable, limitations understandable
○ Context is important: “this free is bad” is unsatisfactory

Composition dictates usability



7KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

● Triton

● SymQEMU

Manticore ●

● KLEE

In
te

rn
al

 C
o

m
p

o
si

ti
o

n

External Composition

● BAP

● Angr

● Sys

● SymCC

● S2E

MAAT ●

How symbolic executors measure up

Bug-finder ≠ average developer or reviewer #2

● Practitioner workflow matters
○ Reverse engineers use IDA Pro, Binary Ninja, 

Ghidra – integration with these is important
○ Auditors might compile source, so integration 

with the compiler (e.g. LLVM) is a benefit

● Requiring the user to do work to get 
work done doesn’t lose points
○ Effective use of symbolic execution 

requires thinking carefully about where it 
best applies, and orchestrating its use

○ High-value targets already well-tested, already 
require careful fuzzer harness development to 
find deep bugs

○ Comparing favorable to a fuzzer that starts at 
main is not inspiring



8KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

● Triton

● SymQEMU

Manticore ●

● KLEE

In
te

rn
al

 C
o

m
p

o
si

ti
o

n

External Composition

● BAP

● Angr

● Sys

● SymCC

● S2E

MAAT ●

How symbolic executors measure up

Why is it that Carnegie Mellon and Stanford always come out on top?

± OCaml-based: great for program 
analysis, harder to integrate

– In for a penny, in for a pound

+ Knowledge base
± Ensure monotonicity
+ Mutual fixpoints

● BAP

+ Compositional variant analysis and 
underconstrained symexec

+ LLVM bitcode as input

● Sys



9KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

● Triton

● SymQEMU

Manticore ●

● KLEE

In
te

rn
al

 C
o

m
p

o
si

ti
o

n

External Composition

● BAP

● Angr

● Sys

● SymCC

● S2E

MAAT ●

How symbolic executors measure up

Operate on the domain of your users, and integrate easily into their workflow

+ Easy-to-integrate with domain 
tools, e.g. IDA Pro, Binary Ninja

+ Highly extensible, due to 
Python-based implementation

Manticore ●
● Triton

● Angr

+ Actionable callbacks: can interpose 
on memory/register reads or writes, 
and alter what data is read or written

MAAT ●



10KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

● Triton

● SymQEMU

Manticore ●

● KLEE

In
te

rn
al

 C
o

m
p

o
si

ti
o

n

External Composition

● BAP

● Angr

● Sys

● SymCC

● S2E

MAAT ●

How symbolic executors measure up

What elephant?

+ The target and the supporting 
runtime are both subject to 
symbolic execution

± Operates on LLVM bitcode
– Source code is user’s domain

– Not meta enough: special function 
handlers operate in wrong domain

– Diffidence: KModule, KInstruction
– Monolithic, focused on main: yields 

“complete” input models, but limits 
usefulness

● KLEE



11KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

● Triton

● SymQEMU

Manticore ●

● KLEE

In
te

rn
al

 C
o

m
p

o
si

ti
o

n

External Composition

● BAP

● Angr

● Sys

● SymCC

● S2E

MAAT ●

How symbolic executors measure up

Symbolic execution’s everything bagel

± Some of the benefits and all of the 
drawbacks of mashing three 
systems together: LLVM, QEMU, 
and KLEE/SymCC

– Complex internal model ⇒ 
complex external model

+ Works with LLVM

+ Works on everything, e.g. Windows 
drivers, Linux userspace

± Runtime use requires manual 
intervention

● S2E

● SymQEMU



12KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

● Triton

● SymQEMU

Manticore ●

● KLEE

In
te

rn
al

 C
o

m
p

o
si

ti
o

n

External Composition

● BAP

● Angr

● Sys

● SymCC

● S2E

MAAT ●

How symbolic executors measure up

Something something Futamura transformation

– Focused on running programs from 
the beginning, i.e. main; looks like a 
fancy fuzzer 

± Has a similar “runtime” concept to 
KLEE (Really, Sym is the runtime and 
CC is a dfsan-like instrumentation)

? Missed opportunity: be a 
symbolic property testing 
game-changer for languages 
targeting LLVM

● SymCC



13KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bug-finding systems should be…
● Composable

○ Internal: combine existing results to derive new results
○ External: outputs can be used as inputs to other tools, tool fits into a larger workflow

● Comprehensive
○ Zero false-negatives at targeted bug class
○ Known presence of false-negatives can be mitigated by huge upside

● Transparent
○ Tool complexity often leads to unpredictable outcomes
○ Behavior should be predictable, results should be explainable, limitations understandable
○ Context is important: “this free is bad” is unsatisfactory

Comprehensiveness and transparency dictate adoption



14KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

SE is neither transparent nor comprehensive

Yup

Comprehensive

Tr
an

sp
ar

en
t● SSE appears comprehensive

○ Explores all feasible paths 🤣
● DSE appears transparent

○ Symbolic pointers 🤔
● Heuristics are everywhere

○ Address endemic problems (e.g. 
scalability, precision)

○ Reduce comprehensiveness (e.g. skip 
this state)

○ Reduce transparency (harder to predict, 
interaction of heuristics leads 
unexpected blind spots) ● T

rit
on

● SymQEMU● 
M

an
ti

co
re

● KLEE

● 
B

A
P

● 
A

n
g

r

● Sys
● SymCC

● 
S2E

● MAAT



15KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Heuristics: short-term gain, long-term pain
● Developing SE tools begets "solving” SE problems

○ Fundamental: Large state space
○ Incidental: Eagerly materializing states at forks causes state explosion
○ Accidental: Unpredictability from state scheduling, pruning

● Heuristics reduce transparency, comprehensiveness
○ Misaligned incentives: Heuristics are often touted as novel contributions!

● Heuristics lead to accidental agency
○ Takes decision-making power out of the hands of human bug-finders
○ Heuristics can interact in unexpected and unpredictable ways
○ Ideal: Externalize heuristics as much as possible

Don’t put the horse before the carriage



16KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

KLEE today and tomorrow



17KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

KLEE’s superpower is its runtime
● Written in same language as the target

○ Benefit: Interface directly with target program entities in domain language

● Subject to the same symbolic execution as the target
○ Compiled to LLVM bitcode

■ Same approach is also used by SymCC, DIVINE
○ Can implement library code or system call models in runtime
○ Benefit: Fork inside of model implementation

● Extensible with “special function handlers”
○ Special runtime APIs for creating symbolic arrays, enabling heuristics, cancelling forks
○ Drawback: Impossible to create a symbolic value without involving memory objects 😠

What KLEE got right



18KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

KLEE’s runtime hasn’t reached its potential
● Special function handlers are a cute hack

○ Theory: Tell KLEE about program properties of interest to analyst, e.g. via assert()
○ Illusion: Trick KLEE into doing what you intend to do by indirectly having it fork down 

control-flow paths, and then cancel the uninteresting states
○ Reality: KLEE has no way of representing or using properties

● KLEE has no persistent, runtime-accessible knowledge base
○ Properties as symbolic events, concrete facts in the knowledge base
○ input(Time, Data), alloc(Time, Addr, Size), free(Time, Addr), etc.

● Manual knowledgebase implementations lack internal composition
○ Why? KLEE has to interpret the implementation mechanics! Falls back on the fork hack
○ Ideally, you want to be able to trivially query/compose properties

Why KLEE’s runtime still feels like a party trick



19KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

KLEE’s interpreter has taken on too much
● KLEE codebase grew organically

○ Scope creep caused by “paper-driven development”
○ Should have asked: could this feature have been implemented through composition?

 
● Externalize implementations and policies to proxyable methods

○ Reentrant: Can call other “top” policy methods (i.e. not just current/lower via this pointer)
○ Effectful: Policy methods are the implementations (e.g. symbolic memory can be a 

proxyable policy)
○ Eventful: A policy method that reads memory shouldn’t return a value, instead it should 

schedule the next step(s) of the interpreter with the value(s) read
■ Symbolic execution is event stream processing
■ Policies are event sources/maps/filters/sorts
■ Properties are events in time

Desirable features for a libKLEE



20KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bridging the interpreter/runtime gap 

Example using properties and policies to detect type confusion

#define KLEE_ATTR(attr) __attribute__((…))

KLEE_ATTR(property) bool constant(void *);
KLEE_ATTR(property) bool changed_constant(void *);

KLEE_ATTR(wrapper:PyObject_CallMethod)
PyObject *call(PyObject *ob, …) {
  // Type confusion if object type has changed!
  assert(constant(&(ob->ob_type)));
  assert(!changed_constant(&(ob->ob_type)));
  return PyObject_CallMethod(ob, …);
}

KLEE_ATTR(wrapper:_PyObject_INIT)
PyObject *init(PyObject *ob, PyTypeObject *tp) {
  PyObject *ob = (PyObject *) _PyObject_INIT(ob, tp);
  constant(&(ob->ob_type));  // Add the property.
  return ob;
}

class ConstantAfterInitPolicy
    : public ProxyPolicy {
  KnowledgeBase<Expr> constant;
  KnowledgeBase<Expr> changed_constant;
  
  ConstantAfterInitPolicy(Policy *next_, Module *M)
    : ProxyPolicy(next_),
      constant(M, “constant”),
      changed_constant(M, “changed_constant”) {}
  
  // Called by the interpreter to perform a store
  // to memory.
  void Store(Policy *P, State *S, StoreInst *I,
             Expr A, Expr V) override {
    
    // Derive a new property from an existing one.
    if (S->Match(constant(A)))
      S->Add(changed_constant(A));

    // Eventually, the next policy implements
    // memory storage.
    next->Store(P, S, I, A, V);
  }
};



21KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

The next frontier is domain integration
● Interactive

○ Goal: Mitigate performance problems due to fundamental problems, e.g. large state space
○ Solution: Ask a bug-finder what to do when an induction variable is symbolic
○ Challenge: Map values from analysis domain (LLVM) back to the bug-finder domain (source)

● Flexible
○ Goal: Drill down on specific paths of interest
○ Solution: Want under-constrained for some values, over-constrained or concrete for others
○ Challenge: Enable bug-finder to start in the middle of a function

● Dynamic
○ Goal: Operate very large codebases without llvm-linking all modules together
○ Solution: I have ideas that integrate nicely with build chain; come ask me!
○ Challenge: Extra indirection, initializers, etc.

Challenges and opportunities beyond simply improving KLEE



22KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

MLIR is the future



23KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

LLVM IR: A blessing and a curse
Blessings

● Permissive open-source license
○ Academic and industry momentum

● Easy and scalable to analyze
○ Not that many kinds of instructions
○ Close-ish to C

● Debug information points back to 
source code, DWARF-like types

● Grad students can make papers out of 
LLVM passes

LLVM is a productivity multiplier for low-level compiler optimizations

Curses

● Many unspecified LLVM dialects
○ -O0 vs. -O1 vs. -O2 vs. -O3
○ ABI-specific intrinsics, ABI lowering of types

● Debug information is unreliable
● Very low level

○ Inlined mechanics of abstractions (e.g. C++ 
standard library containers)

○ Optimized for target, not for analyzer
● LLVM values are meaningless

○ Not related to bug-finder’s domain: source
○ %foo.1.scev.sroa.1.1.3 🤣

● Legacy: API and grad student churn
○ Many tools stuck on LLVM 3.x, 4.x, 5.x, etc.
○ Many tools will never work with opaque ptrs



24KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Different IRs are good for different things

Focusing on one IR compromises comprehensiveness, transparency

Level Pros Cons

High ● Close to bug-finder domain
● Explicit abstractions, control-flow
● Explicit intra-object boundaries

● Verbose, not efficiently analyzable
● Missing implicit behaviors (e.g. C++ destructor calls)

Medium ● Doesn’t really exist today?

Low ● Efficiently analyzable ● High-level abstractions, types, control-flow lost to 
optimization (inlining, hoisting/sinking, folding)

● Loop and other program invariants less clear

Binary ● Bug-exploiter domain
● Blurred object boundaries (easier to 

evaluate buffer overflows)
● Succinct

● Blurred object boundaries (hard to analyze)
● Unreliability of debug info, symbols
● Tight coupling of control-flow, type, variable 

recovery



25KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Different IRs are good for different things

The best fit for an analysis might be far from a bug-finder’s domain

Level Pros Cons

High ● Close to bug-finder domain
● Explicit abstractions, control-flow
● Explicit intra-object boundaries

● Verbose, not efficiently analyzable
● Missing implicit behaviors (e.g. C++ destructor calls)

Medium ● Doesn’t really exist today?

Low ● Efficiently analyzable ● High-level abstractions, types, control-flow lost to 
optimization (inlining, hoisting/sinking, folding)

● Loop and other program invariants less clear

Binary ● Bug-exploiter domain
● Blurred object boundaries (easier to 

evaluate buffer overflows)
● Succinct

● Blurred object boundaries (hard to analyze)
● Unreliability of debug info, symbols
● Tight coupling of control-flow, type, variable 

recovery

A
b

stractio
n

 lo
ss

Lo
g

ic b
u

g
 d

o
m

ain

A
n

alysis effi
cien

cy

E
xp

lo
it d

o
m

ain

E
xecu

tio
n

 faith
fu

ln
ess



26KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bug-finding needs full stack visibility
● MLIR: Multi-level intermediate representation

○ Like LLVM, but supports user-defined dialects
■ Dialects can be used to represent different 

abstraction levels
■ Can transform dialects, e.g. make a custom 

dialect for operations on a std::vector
■ Stop writing C parsers that produce custom IRs
■ Make a custom MLIR dialect instead

○ Mostly structured control-flow

● VAST produces MLIR from Clang ASTs
○ High-level dialect with high-level types, control-flow 

constructs
○ Medium-level dialect for type lowerings
○ Low-level dialect, MLIR embedding of -O0 LLVM
○ Open source: https://github.com/trailofbits/vast 

Want efficiency of LLVM IR and expressivity of source

Source

High-Level Dialect

Low-Level Dialect

Interpreter

Intermediate Dialects

User

2.
 Y

ie
ld

 in
du

ct
iv

e 
va

ri
ab

le

3. A
bstract variable dom

ain

1. Com
pile through VA

ST

https://github.com/trailofbits/vast


27KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Parting thoughts from industry



28KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bug-finding tools are for bug-finders
● Bug-finders are skilled tool-users with an existing workflow

● Composition, especially with other tools in the workflow, dictates tool use

● Comprehensiveness and transparency dictate tool adoption

● Results should be presented in the domain of the bug-finder

● Today’s KLEE has the right capabilities but the wrong interfaces

● Tomorrow’s libKLEE should empower bug-finders by externalizing heuristics

● Bugs and their exploits cross abstraction levels, program analysis must follow

● VAST enables tailoring analysis domains to the tool and result domains to the 
bug-finder

Humans are at the center of productivity

https://github.com/trailofbits/vast


29KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Measurement crisis
● Symbolic execution comparing favorably to fuzzing is not inspiring!

○ Why invest time for possibility of marginal improvements?
○ To overcome a tried-and-true process, the promised upside must be significant

■ Adoption is an uphill battle because the status quo gets the job done
■ New approaches, especially sophisticated ones, look risky
■ Triton, SATURN have seen adoption as binary deobfuscation game-changers

● Misaligned incentives
○ “Novelty” appearing in the introduction of a paper begs the question

■ Everyone has their “redo SAGE phase”, not everyone has an idle cluster of Intel Xeon’s
○ What horrible hacks helped you achieve that novelty or maximize those metrics?

■ Transparency: Are your tool’s outcomes predictable, explainable, understandable?
■ Comprehensiveness: Does your tool have blind spots?

Scare quotes aren’t supported by this font



30KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bug-finding has to be human-centered
● Adoption of SE in RE/VR proves monoliths are not desirable

○ SE tools designed as extensible libraries, not push-button solutions
○ Easy to tailor to one’s target, integrate into existing workflow (IDA Pro, Binary Ninja)

● Target domain of tools (instructions) matches human-analyzed domain
○ Externalize heuristics: require human analysts to make decisions / configure features
○ Actionable extension: observation of what’s going on isn’t sufficient

■ Context recovery challenge: optimized LLVM values are not meaningful, source code is

● Bug-finders should set the objectives, not tools
○ Code coverage maximization is not a universal objective
○ Sometimes want under-constrained, sometimes over-constrained, sometimes mixed
○ Enable bug-finders to actually express, record, and reason over properties of interest

Symbolic execution… but for whom?



31KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

VAST’s dialects bridge the semantic gap
● Next-generation symbolic execution 

needs to reliably integrate with 
bug-finders in their domain
○ Interpret at a low-level
○ Relate results and queries at a high level

● Next-generation software verification 
should start with VAST dialects
○ Stop writing C parsers that produce custom IRs
○ Make a custom MLIR dialect instead

MLIR VAST is the future

Source

High-Level Dialect

Low-Level Dialect

Interpreter

Intermediate Dialects

User

2.
 Y

ie
ld

 in
du

ct
iv

e 
va

ri
ab

le

3. A
bstract variable dom

ain

1. Com
pile through VA

ST



32KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Bug-finding productivity is a function of…
● Skill and determination
● Focused effort

○ Look at the code that matters
○ Understand the context and the critical paths through the code

● Reliable tools
○ Tools must be reliable, limitations must be minimized or well-understood
○ Helpful to have a mental model for predicting tool behavior

● Leverage
○ Compose tools or results to narrow focus, expand capabilities
○ Synergies abound

■ Tired: 99% false-positive rate
■ Wired: False-positives can be opportunities to improve code comprehension

What makes a human bug-finder productive?



33KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Properties as first-class entities
● Move logic out of the interpreter and into the runtime

○ Properties should be implemented as a named, typed, possibly symbolic metadata store
○ Operate on target program data structures (e.g. named to track a target-specific property, or 

reference a target-specific memory location)
○ Expressed in domain of the bug-finder, i.e. C or C++, in the KLEE runtime

● Bind uninterpreted SMT functions solver to runtime functions
○ Tired: Attributed extern declarations mirrored into SMT solver as uninterpreted functions
○ Wired: Configure when properties are checked with special function handlers
○ Inspired: Deduce properties by defining property functions as compositions of other 

property functions (e.g. Datalog) 

Why you should want persistent properties



34KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

Properties as first-class entities: an example

What I wish I could do with KLEE today

#define KLEE_ATTR(...) \
  __attribute__((annotate(“klee:” #__VA_ARGS__))

bool ref_count(void *) KLEE_ATTR(property);

void *malloc_wrapper(size_t sz) KLEE_ATTR(wrapper:PyObject_Malloc) {
  PyObject *ptr = (PyObject *) PyObject_Malloc(sz);
  ref_count(&(ptr->ref_cnt));
  return ptr;
}

bool store(void *ptr, size_t size) KLEE_ATTR(event);
bool load(void *ptr, size_t size) KLEE_ATTR(event);
bool store_to_ref_count(void *ptr, size_t sz) KLEE_ATTR(derived_event) {
  return store(ptr, sz) && ref_count(ptr);
}



35KLEE Workshop 2022    |   Can symbolic execution be a productivity multiplier for human bug-finders?

KLEE’s missing API
● KLEE’s internal and external composition story is uninspiring

○ Special function handlers are extension points in name only
■ Require modifying and recompiling KLEE
■ Hard to tailor to the target program

○ Problematic focus on main
■ Reasonable for comparing against a fuzzer on coreutils, bad for big programs
■ Exploring option/input parsing code should be a choice by the bug-finder; it’s a 

prerequisite now
● Special function handlers should be a KLEE API

○ Let bug-finders tell KLEE when to check properties
○ Missed opportunity: JIT-compile specially attributed runtime functions to native handlers

■ Then they can have access to target-specific data structures / functions
● Today’s KLEE should be an application of tomorrow’s libKLEE

Where KLEE didn’t go far enough


