Tq " Can symbolic execution be a productivity
Vs A L

multiplier for human bug-finders?

UIB To Peter Goodman
9D 1Jd

September15-16™, 2022

Hi everyone

Peter Goodman

e Staff engineer at Trail of Bits

o Email: peter@trailofbits.com

o Twitter: @peter a goodman; the “a” is for “amazing”

e Talk to me about:

o Static or dynamic binary translation
m Remill, Anvill, VMill, McSema, GRR, microx, Granary, DynamoRIO, etc.

o Static or dynamic program analysis
m PASTA, Magnifier, Dr. Lojekyll Datalog compiler, DeepState, KLEE-native

o LLVM, MLIR
n Rellic, VAST

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 2

https://www.trailofbits.com/
mailto:peter@trailofbits.com
https://twitter.com/peter_a_goodman

Where today’s tools stand, how KLEE can improve, and why MLIR is the future

Humans are at the center of productivity

e What makes a tool a productivity multiplier?
o How do today’s tools measure up?

e What KLEE can improve upon today to be ready for tomorrow

o LLVM's runtime is its biggest strength and missed opportunity
o LLVM is KLEE's domain, but not the domain of bug-finders

e The future is multi-level analyses with MLIR
o Bug-finding tools should communicate with bug-finders in their domain of interest
o Bug-finding tools should operate on the best-fit domain(s) for their analyses
o VAST is making this future happen with of MLIR dialects, from high level, down to LLVM

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 3

&

https://github.com/trailofbits/vast

Three pillars of productivity tools

KLEE Workshop 2022 Can symbolic execution be a productivity multiplier for human bug-finders?

What makes a bug-finding system a productivity multiplier?

Bug-finding systems should be..

e Composable

o Internal: combine existing results to derive new results

o External: outputs can be used as inputs to other tools, tool fits into a larger workflow
e Comprehensive

o Zero false-negatives at targeted bug class

o Known presence of false-negatives can be mitigated by huge upside
e Transparent

o Tool complexity often leads to unpredictable outcomes
o Behavior should be predictable, results should be explainable, limitations understandable
o Contextis important: “this free is bad” is unsatisfactory

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 5

&

Composition dictates usability

Bug-finding systems should be..

e Composable

o Internal: combine existing results to derive new results

o External: outputs can be used as inputs to other tools, tool fits into a larger workflow
e Comprehensive

o Zero false-negatives at targeted bug class

o Known presence of false-negatives can be mitigated by huge upside
e Transparent

o Tool complexity often leads to unpredictable outcomes
o Behavior should be predictable, results should be explainable, limitations understandable
o Contextis important: “this free is bad” is unsatisfactory

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 6

&

Bug-finder # average developer or reviewer #2

How symbolic executors measure up

e Practitioner workflow matters
o Reverse engineers use IDA Pro, Binary Ninja,
Ghidra - integration with these is important
o Auditors might compile source, so integration
with the compiler (e.g. LLVM) is a benefit

e BAP o Sys

Manticore o e Angr

e Requiring the user to do work to get MAAT e e Triton

work done doesn’t lose points
o Effective use of symbolic execution
requires thinking carefully about where it
best applies, and orchestrating its use
o High-value targets already well-tested, already
require careful fuzzer harness development to
find deep bugs

o Comparing favorable to a fuzzer that starts at
main is not inspiring e SymCC e SymQEMU
e

o KLEE e S2E

Internal Composition

External Composition

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 7

Why is it that Carnegie Mellon and Stanford always come out on top?

How symbolic executors measure up

1+

OCaml-based: great for program e BAP e Sys
analysis, harder to integrate
- Infora penny, in for a pound

+ Knowledge base
+ Ensure monotonicity
+ Mutual fixpoints

+ Compositional variant analysis and
underconstrained symexec
+ LLVM bitcode as input

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

Operate on the domain of your users, and integrate easily into their workflow
How symbolic executors measure up

+ Highly extensible, due to
Python-based implementation

Manticore o e Angr

+ Easy-to-integrate with domain MAAT e e Triton
tools, e.g. IDA Pro, Binary Ninja

+ Actionable callbacks: can interpose
on memory/register reads or writes,
and alter what data is read or written

&

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 9

What elephant?

How symbolic executors measure up

+ The target and the supporting

runtime are both subject to

symbolic execution

Operates on LLVM bitcode

- Source code is user's domain

- Not meta enough: special function
handlers operate in wrong domain

- Difiidence: KModule, Kinstruction

- Monolithic, focused on main: yields
“complete” input models, but limits
usefulness

1+

e KLEE

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

Symbolic execution’s everything bagel

How symbolic executors measure up

+ Works on everything, e.g. Windows
drivers, Linux userspace
+ Runtime use requires manual
intervention

I+

Some of the benefits and all of the
drawbacks of mashing three
systems together: LLVM, QEMU,
and KLEE/SymCC
- Complex internal model =
complex external model
+ Works with LLVM

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

e S2E

e SymQEMU

Something something Futamura transformation
How symbolic executors measure up

- Focused on running programs from

the beginning, i.e. main; looks like a

fancy fuzzer

Has a similar “runtime” concept to

KLEE (Really, Sym is the runtime and

CC is a dfsan-like instrumentation)

? Missed opportunity: be a

symbolic property testing
game-changer for languages
targeting LLVM

1+

e SymCC

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

Comprehensiveness and transparency dictate adoption

Bug-finding systems should be..

e Composable

o Internal: combine existing results to derive new results

o External: outputs can be used as inputs to other tools, tool fits into a larger workflow
e Comprehensive

o Zero false-negatives at targeted bug class

o Known presence of false-negatives can be mitigated by huge upside
e Transparent

o Tool complexity often leads to unpredictable outcomes
o Behavior should be predictable, results should be explainable, limitations understandable
o Contextis important: “this free is bad” is unsatisfactory

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 13

&

Yup

SE Is neither transparent nor comprehensive

e SSE appears comprehensive "
o Explores all feasible paths 42 qc,
|
e DSE appears transparent 9
o Symbolic pointers & 2
e Heuristics are everywhere o
. -
o Address endemic problems (e.g.
scalability, precision)
o Reduce comprehensiveness (e.g. skip g
this state) ,9°
o Reduce transparency (harder to predict, S o
interaction of heuristics leads O c
unexpected blind spots) MU
@
Comprehensive
KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 14

&

Don’t put the horse before the carriage

Heuristics: short-term gain, long-term pain

e Developing SE tools begets "solving” SE problems

o Fundamental: Large state space
o Incidental: Eagerly materializing states at forks causes state explosion
o Accidental: Unpredictability from state scheduling, pruning

e Heuristics reduce transparency, comprehensiveness
o Misaligned incentives: Heuristics are often touted as novel contributions!

e Heuristics lead to accidental agency
o Takes decision-making power out of the hands of human bug-finders
o Heuristics can interact in unexpected and unpredictable ways
o Ideal: Externalize heuristics as much as possible

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

&

KLEE today and tomorrow

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

What KLEE got right

KLEE's superpower is its runtime

e Written in same language as the target
o Benefit: Interface directly with target program entities in domain language

e Subject to the same symbolic execution as the target

o Compiled to LLVM bitcode

m Same approach is also used by SymCC, DIVINE
o Canimplement library code or system call models in runtime
o Benefit: Fork inside of model implementation

e Extensible with “special function handlers”

o Special runtime APIs for creating symbolic arrays, enabling heuristics, cancelling forks
o Drawback: Impossible to create a symbolic value without involving memory objects (s

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 17

Why KLEE's runtime still feels like a party trick

KLEE's runtime hasn't reached its potential

e Special function handlers are a cute hack

o Theory: Tell KLEE about program properties of interest to analyst, e.g. via assert()

lllusion: Trick KLEE into doing what you intend to do by indirectly having it fork down
control-flow paths, and then cancel the uninteresting states

Reality: KLEE has no way of representing or using properties

o

e KLEE has no persistent, runtime-accessible knowledge base

o Properties as symbolic events, concrete facts in the knowledge base

o input(Time, Data),alloc(Time, Addr, Size), free(Time, Addr), etc.
°

Manual knowledgebase implementations lack internal composition

o Why? KLEE has to interpret the implementation mechanics! Falls back on the fork hack

o Ideally, you want to be able to trivially query/compose properties

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

&

Desirable features for a libKLEE

KLEE's interpreter has taken on too much

e KLEE codebase grew organically
o Scope creep caused by “paper-driven development”
o Should have asked: could this feature have been implemented through composition?

e Externalize implementations and policies to proxyable methods
o Reentrant: Can call other “top” policy methods (i.e. not just current/lower via this pointer)
o Effectful: Policy methods are the implementations (e.g. symbolic memory can be a
proxyable policy)
o Eventful: A policy method that reads memory shouldn’t return a value, instead it should
schedule the next step(s) of the interpreter with the value(s) read
m Symbolic execution is event stream processing
m Policies are event sources/maps/filters/sorts
m Properties are events in time

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 19

&

Example using properties and policies to detect type confusion

Bridging the interpreter/runtime gap

#define KLEE_ATTR(attr) __attribute__((..)) class ConstantAfterInitPolicy
: public ProxyPolicy {
KnowledgeBase<Expr> constant;

KLEE_ATTR(property) bool constant(void *); KnowledgeBase<Expr> changed_constant;

KLEE_ATTR(property) bool changed_constant(void *);
ConstantAfterInitPolicy(Policy *next_, Module *M)
KLEE_ATTR(wrapper:PyObject_CallMethod) : ProxyPolicy(next_),

PyObject *call(PyObject *ob, ..) { gg::;zgtggﬁstgngaanxcaénged constant”) {}
// Type confusion if object type has changed! - ! -

assert(constant(&(ob->ob_type))); // Called by the interpreter to perform a store
assert(!changed_constant(8(0b->ob_type))); Céigosﬁgggggélicy *P, State *S, StorelInst =*I
} return PyObject_CallMethod(ob, ..); Expr A, Eipr V) override { !
// Derive a new propert¥ from an existing one.
KLEE_ATTR(wrapper:_PyObject_INIT) if (s->Match(constant(A)))
PyObject *init(PyObject *ob, PyTypeObject =*tp) { S->Add(changed_constant(A));
PyObject *ob = (PyObject) _PyObject INIT(ob, tp); // Eventually, the next policy implements
constant(&(ob->ob_type)); // Add the property. // memory storage.
return ob; } next->Store(P, S, I, A, V);
}

b

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 20

Challenges and opportunities beyond simply improving KLEE

The next frontier is domain integration

e Interactive
o Goal: Mitigate performance problems due to fundamental problems, e.g. large state space
o Solution: Ask a bug-finder what to do when an induction variable is symbolic
o Challenge: Map values from analysis domain (LLVM) back to the bug-finder domain (source)
e Flexible
o Goal: Drill down on specific paths of interest
o Solution: Want under-constrained for some values, over-constrained or concrete for others
o Challenge: Enable bug-finder to start in the middle of a function
e Dynamic
o Goal: Operate very large codebases without llvm-linking all modules together
o Solution: | have ideas that integrate nicely with build chain; come ask me!
o Challenge: Extra indirection, initializers, etc.

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 21

&

MLIR is the future

KLEE Workshop 2022

Can symbolic execution be a productivity multiplier for human bug-finders?

22

&

LLVM is a productivity multiplier for low-level compiler optimizations

LLVM IR: A blessing and a curse

Blessings Curses

e Permissive open-source license e Many unspecified LLVM dialects

o Academic and industry momentum o -00vs. -01vs. -02vs. -03
e Easy and scalable to analyze o ABI-specificintrinsics, ABI lowering of types

o Not that many kinds of instructions e Debuginformation is unreliable

o ClosedishtoC _ e Verylow level
e Debuginformation points back to o Inlined mechanics of abstractions (e.g. C++

source code, DWARF-like types standard library containers)

o Optimized for target, not for analyzer

LLVM values are meaningless
o Notrelated to bug-finder's domain: source
o %foo.l.scev.sroa.1.1.3 ¢
e Legacy: APl and grad student churn
o Many tools stuck on LLVM 3.x, 4.x, 5., etc.
o Many tools will never work with opaque ptrs

e Grad students can make papers out of
LLVM passes

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 23

Focusing on one IR compromises comprehensiveness, transparency

Different IRs are good for different things

Level Pros Cons
High e C(Close to bug-finder domain e Verbose, not efficiently analyzable
e Explicit abstractions, control-flow e Missing implicit behaviors (e.g. C++ destructor calls)
e Explicit intra-object boundaries
Medium e Doesn't really exist today?
Low e Efficiently analyzable e High-level abstractions, types, control-flow lost to
optimization (inlining, hoisting/sinking, folding)
e Loop and other program invariants less clear
Binary e Bug-exploiter domain e Blurred object boundaries (hard to analyze)
e Blurred object boundaries (easier to e Unreliability of debug info, symbols
evaluate buffer overflows) e Tight coupling of control-flow, type, variable
e Succinct recovery

KLEE Workshop 2022

| Can symbolic execution be a productivity multiplier for human bug-finders?

The best fit for an analysis might be far from a bug-finder’s domain

Different IRs are good for different things

Level Pros Cons
High
= > m m > -
3 X P o (=}
D e =l @ | Q
5 c = o 0
Medium =. o o =3
7] () o 9,. =
1] > o o «
Low = a 3 - o
(2] — Q _— (]
2 —+ = o 3
o = > 7 o
> =h (7)) —
Q = S
Binary < >
1]
n
| A A \/
KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

Want efficiency of LLVM IR and expressivity of source

Bug-finding needs full stack visibility

e MLIR: Multi-level intermediate representation
o Like LLVM, but supports user-defined dialects

m Dialects can be used to represent different
abstraction levels = | Source '
m Cantransform dialects, e.g. make a custom g '-- L - — o - -
dialect for operationson a std: :vector 3 = i
m Stop writing C parsers that produce custom IRs @ High-Level Dialect = g
m Make a custom MLIR dialect instead 5 v s 8
o Mostly structured control-flow g . . 2 <
@ | Intermediate Dialects g %

° VAST produces MLIR from Clang ASTs = y 2 =
High-level dialect with high-level types, control-flow - 2 §
constructs Low-Level Dialect < o

o Medium-level dialect for type lowerings / L ~ &’

O

Low-level dialect, MLIR embedding of -00 LLVM
o Open source: https://github.com/trailofbits/vast Interpreter

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 26

https://github.com/trailofbits/vast

Parting thoughts from industry

KLEE Workshop 2022 Can symbolic execution be a productivity multiplier for human bug-finders?

Humans are at the center of productivity

Bug-finding tools are for bug-finders

e Bug-finders are skilled tool-users with an existing workflow

e Composition, especially with other tools in the workflow, dictates tool use

e Comprehensiveness and transparency dictate tool adoption

e Results should be presented in the domain of the bug-finder

e Today’'s KLEE has the right capabilities but the wrong interfaces

e Tomorrow's libKLEE should empower bug-finders by externalizing heuristics

e Bugs and their exploits cross abstraction levels, program analysis must follow

e VAST enables tailoring analysis domains to the tool and result domains to the
bug-finder

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

28

H

https://github.com/trailofbits/vast

Scare quotes aren’t supported by this font

Measurement crisis

e Symbolic execution comparing favorably to fuzzing is not inspiring!
o Why invest time for possibility of marginal improvements?
o To overcome a tried-and-true process, the promised upside must be significant
m Adoption is an uphill battle because the status quo gets the job done
m New approaches, especially sophisticated ones, look risky
m Triton, SATURN have seen adoption as binary deobfuscation game-changers

e Misaligned incentives
o “Novelty” appearing in the introduction of a paper begs the question
m Everyone has their “redo SAGE phase”, not everyone has an idle cluster of Intel Xeon’s
o What horrible hacks helped you achieve that novelty or maximize those metrics?
m Transparency: Are your tool's outcomes predictable, explainable, understandable?
m Comprehensiveness: Does your tool have blind spots?

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 29

Symbolic execution... but for whom?

Bug-finding has to be human-centered

Adoption of SE in RE/VR proves monoliths are not desirable

°
o SEtools designed as extensible libraries, not push-button solutions
o Easy to tailor to one’s target, integrate into existing workflow (IDA Pro, Binary Ninja)
e Target domain of tools (instructions) matches human-analyzed domain
o Externalize heuristics: require human analysts to make decisions / configure features
o Actionable extension: observation of what's going on isn't sufficient
m Context recovery challenge: optimized LLVM values are not meaningful, source code is
e Bug-finders should set the objectives, not tools

Code coverage maximization is not a universal objective
Sometimes want under-constrained, sometimes over-constrained, sometimes mixed

Enable bug-finders to actually express, record, and reason over properties of interest

O
O
(0]

&

30

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

MHR VAST is the future

VAST's dialects bridge the semantic gap

e Next-generation symbolic execution

needs to reliably integrate with
- . . =1 |
bug-finders in their domain qaSowree . |
o Interpret at a low-level 3 ¥ _ = >
o Relate results and queries at a high level ° H'gh:'eve' Dialect E g
=2 > Y
g o Nk
e Next-generation software verification S | ImtermediateDialects g |3
. . >)
should start with VAST dialects q = 2
o Stop writing C parsers that produce custom IRs Low-Level Dialect 3 §
o Make a custom MLIR dialect instead Y y Ny

Interpreter

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 3]

What makes a human bug-finder productive?

Bug-finding productivity is a function of..

e Skill and determination

e Focused effort
o Look at the code that matters
o Understand the context and the critical paths through the code
e Reliable tools
o Tools must be reliable, limitations must be minimized or well-understood
o Helpful to have a mental model for predicting tool behavior
e Leverage
o Compose tools or results to narrow focus, expand capabilities
o Synergies abound
m Tired: 99% false-positive rate
m Wired: False-positives can be opportunities to improve code comprehension

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders?

32

&

Why you should want persistent properties

Properties as first-class entities

e Move logic out of the interpreter and into the runtime

o Properties should be implemented as a named, typed, possibly symbolic metadata store

o Operate on target program data structures (e.g. named to track a target-specific property, or
reference a target-specific memory location)

o Expressed in domain of the bug-finder, i.e. C or C++, in the KLEE runtime

e Bind uninterpreted SMT functions solver to runtime functions

o Tired: Attributed extern declarations mirrored into SMT solver as uninterpreted functions
o Wired: Configure when properties are checked with special function handlers

o Inspired: Deduce properties by defining property functions as compositions of other
property functions (e.g. Datalog)

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 33

&

What | wish | could do with KLEE today

Properties as first-class entities: an example

#tdefine KLEE_ATTR(...) \
__attribute__((annotate(“klee:” #__VA _ARGS__))

bool ref_count(void *) KLEE_ATTR(property);

void *malloc_wrapper(size_t sz) KLEE_ATTR(wrapper:PyObject_Malloc) {
PyObject *ptr = (PyObject *) PyObject_Malloc(sz);
ref_count(&(ptr->ref_cnt));
return ptr;

bool store(void *ptr, size_t size) KLEE_ATTR(event);

bool load(void =*ptr, size_t size) KLEE_ATTR(event);

bool store_to_ref_count(void *ptr, size_t sz) KLEE_ATTR(derived_event) {
return store(ptr, sz) &5 ref_count(ptr);

}

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 34

&

Where KLEE didn't go far enough

KLEE's missing API

e KLEE's internal and external composition story is uninspiring

o Special function handlers are extension points in name only
m Require modifying and recompiling KLEE
m Hard to tailor to the target program

o Problematic focus on main
m Reasonable for comparing against a fuzzer on coreutils, bad for big programs
m Exploring option/input parsing code should be a choice by the bug-finder; it's a

prerequisite now

e Special function handlers should be a KLEE API

o Let bug-finders tell KLEE when to check properties
o Missed opportunity: JIT-compile specially attributed runtime functions to native handlers
m Then they can have access to target-specific data structures / functions

e Today’'s KLEE should be an application of tomorrow’s libKLEE

KLEE Workshop 2022 | Can symbolic execution be a productivity multiplier for human bug-finders? 35

