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Symbolic Execution: Challenges and Goal
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Candidate States:
a0

Tests Generated:

b0 c0 d0 e0

a0-b0-e0

Coverage Objective of Symbolic Execution:

arg max
!"#!#

| ⋃!∈!"#!# coverage(𝑡) |
𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

The Path Explosion Challenge:

#states is exponential in #branches

#states explodes at deep branches

e.g., 10k-100k states for coreutils

Goal: Obtain a good strategy that can
select promising states



Define ML Problem and Model
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State Selection Strategies:
(can be deterministic or probabilistic)

State Strategy

Importance
Score

What is the ideal state selection strategy?

arg max
!"#!#

| ⋃!∈!"#!# coverage(𝑡) |
𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

Coverage objective of symbolic execution

reward 𝑠 =
|⋃!∈#$%#%&'()(+) coverage(𝑡) |
∑-∈%#.#$%&'()(+) stateTime(𝑑)

Selection with an ideal reward function

Cannot calculate testsFrom and statesFrom at test time!

The ideal selection cannot be achieved in general!

However, we can train a model to predict the ideal reward!



Learch: Our Learned Strategy
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State Feedforward
Networks

Predicted
Reward

Training
Dataset

Features

Manuel Heuristics
(based on some simple properties of the input state)



Obtaining a Supervised Dataset
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Time Spent by Each State

a0 c0 f0 g0 c1 f1 g1 b0 d0
1 2 2 2 1 1 2 2 2

States Cov NewCov
a0-c0-f0-g0 a, c, f, g a, c, f, g1

a0-c0-f0-c1-f1-g1 a, c, f, g ∅2

a0-b0-d0 b, da, b, d3



Obtaining a Supervised Dataset
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States Cov NewCov
a0-c0-f0-g0 a, c, f, g a, c, f, g1

a0-c0-f0-c1-f1-g1 a, c, f, g ∅2

a0-b0-d0 b, da, b, d3

a0

c0 b0

f0 d0

g0 c1

f1

g1

Tests Tree
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Obtaining a Supervised Dataset
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f0 d0
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State Time TotalCov TotalTime Reward

a0 1 6 15 0.4

c0 2 4 10 0.4

f0 2 4 8 0.5

g0 2 4 2 2

c1 1 0 4 0

f1 1 0 3 0

g1 2 0 2 0

b0 2 2 4 0.5

d0 2 2 2 1



Obtaining a Supervised Dataset
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Procedure genData

Input: a set of training programs
a set of strategies

Output: a supervised dataset

← ∅

Obtain new data on with

For each and

Add to

Return



Final Iterative Learning Algorithm
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genData

Manual Heuristics

Training Programs Supervised Data Learned Strategy
(iteration 1)

Iteration 1:



Final Iterative Learning Algorithm
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genData

Training Programs Supervised Data Learned Strategy
(iteration j)

Iteration j:
(j > 1)

Learned Strategy
(iteration j-1)

Half of the
Coreutils Programs



Evaluation: Coreutils Test Set
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10 535 79 14 523 91

21 519 95 21 551 62

rps

nurs:depth

sgs

porfolio

Learch

Line Coverage



Evaluation: Coreutils Test Set
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9 66 22 6 67 21

7 64 24 10 67 21

rps

nurs:depth

sgs

porfolio

Learch

UBSan Violations



Generalization: 10 Real-world Programs
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rss rps nurs:cpicnt nurs:depth sgs portfolio Learch

18 17 20 19
24 23 24

Line Coverage over Time (h)

Detecting UBSan Violations

readelfgrep



Generating Seeds for AFL
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2489
2882

sgs

Learch

objcopy
4133
4531

nurs:depth

Learch

readelf
5582
5689

rps

Learch

make

Discovering Paths

Detecting UBSan Violations

rss rps nurs:cpicnt nurs:depth sgs portfolio Learch

66 68
100 98

118
97

128

4243
4364

sgs

Learch

sqlite



ML-driven Program Analysis
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General Receipe
Identify challengs and goal

Define ML problem and model

Obtain a supervised dataset

Iteratively refine learned models

Instantiations

Learch Learn to explore paths for symbolic execution
[CCS’ 21. He, Sivanrupan, Tsankov, Vechev]

Learn to approximate for numerical analysis
[PLDI’ 20. He, Singh, Püschel, Vechev]

learn to fuzz from symbolic execution
[CCS’ 19. He, Balunovic, Ambroladze, Tsankov, Vechev]

Lait

ILF

Analysis provides gaurantees

Based on classic framework

Paradigm

Classic
Analysis

Learned
Models

Effective and Efficient



Learch: ML-driven Path Exploration
https://github.com/eth-sri/learch

https://github.com/eth-sri/learch

