
Detection of undefined behavior using
KLEE
Pavel Iatchenii

What is undefined behavior

• Not unspecified behavior
• Not implementation-defined behavior
• ”Behavior, upon the use of a non-portable or erroneous program

construct or of erroneous data, for which International Standard
imposes no requirements” (C99 standard)

• “Anything at all can happen; the Standard imposes no
requirements. The program may fail to compile, or it may execute
incorrectly. . . ” (comp.lang.c)

What is unintentional behavior

This is well-defined behavior, opposite to undefined behavior, which usu-
ally goes against programmers’ intent and may also be a bug.

UB in symbolic execution

• Injection of checks by KLEE: division by zero, overshift overflow
• Natural processing by KLEE: dereferencing a nullptr, reaching an

unreachable program point, etc
• Cases that are hard to catch without code instrumentation:

integer overflow, use of a misaligned pointer, etc

How it works in LLVM right now

LLVM UndefinedBehaviorSanitizer consists of several parts:
• Code generator, uses compile-time instrumentation to insert

certain kinds of checks along with handlers
• Runtime, implements handlers and exits the program if so

configured

How much work has been done in KLEE

KLEE version of UB detector consists of several parts:
• Unchanged LLVM code generator to insert handlers
• Adopted LLVM runtime to accurately analyse the passed

arguments containing source location and values of handlers
• Custom tests with symbolic variables for different types of UB

How to start detecting UB

• Build bitcode with -fsanitize=* sanitizer options of your choice
• Run KLEE, the rest is done by KLEE runtime itself
• NEW! It is now possible to detect cases of UB in the next poster

examples and many others, check out LLVM docs to explore more

References

https://github.com/klee/klee/pull/1378
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://utbot.org

Examples of undefined behavior

Signed integer oveflow

signed int sum(signed int x , signed int y) {
return x + y ;

}
If sum of x and y exceeds 2147483647.

Pointer oveflow

char a c c e s s (char ∗ pt r , int o f f s e t) {
return ∗(p t r + o f f s e t)

}
If ptr is a nullptr or the calculation blows past the end of address space.

Usage of invalid builtin

int c t z (unsigned int x) {
return __bu i l t i n_c t z (x) ;

}
If x is zero.

Use of misaligned pointer

char ∗ pas s (__attr ibute__ ((a l i g n _ v a l u e (4))) char ∗ p t r) {
return p t r ;

}
If ptr is not aligned to 4 bytes.

Examples of unintentional behavior

Unsigned integer oveflow

unsigned int sum(unsigned int x , unsigned int y) {
return x + y ;

}
If sum of x and y exceeds 4294967295.

Implicit truncation

unsigned char c onv e r t (signed int x) {
return x ;

}
If that results in data loss.

Violation of nullable attribute

char ∗ _Nonnul l pa s s (char ∗ p t r) {
return p t r ;

}
If ptr is a nullptr.

3rd International KLEE Workshop on Symbolic Execution 15–16 September 2022 • London, UK

https://github.com/klee/klee/pull/1378
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://utbot.org

