
Workshop 2022

Mobile Security Team Warsaw, Poland

Enabling Symbolic Execution on Complex System Code
via Automatic Test Harness Generation

CAS & AoT

AUTHORS:

Tomasz Kuchta
@Tomasz_Kuchta

Bartosz Zator
@bartosz_zator

Workshop 2022

Motivation:
Systems software is complex
Many crucial systems are built with unsafe languages such as C/C++

These systems build the foundation of infrastructure we rely on
Thorough and systematic testing is paramount

OS Kernels

Basebands

Bootloaders

Firmware

IoT

Automotive

WLAN

etc.

SYSTEMS

Workshop 2022

Motivation:
Systems software is complex
Working with such systems poses significant challenges, e.g.:

• Code base size

• Variety of product configurations

Testing is also difficult:

• Custom hardware – no virtualization available

• Non-trivial setup of testing and debugging

• Toolchain not always available on device

• Hard to run techniques such as symbolic execution

Workshop 2022

Motivation:
Systems complexity
Example: a modern smartphone

Many software layers

~thousands of
developers

~74M lines of code

~330k source files
[.c, .h, .cpp, .cxx, .hpp]

Engineers cannot handle S/W stack without supporting tools
Multiple potential vectors of attack

Bootloader, Linux kernel, modem, native framework

Workshop 2022

Our contributions
We propose 2 new tools aimed at complex software systems

New approach to handle the complexity of large scale S/W systems

CAS: Code Aware Services

• Provides insight into how a S/W product is made

• Automates source code related operations

• Collects build and source information

• Exposes the information to external applications

AoT: Auto Off-Target

• Built on top of CAS

• Automatically generates testable off-target code

Workshop 2022

CAS: Code Aware
Services

GitHub: https://github.com/Samsung/CAS

Workshop 2022

Introduction
A system that provides insight into how a S/W product is made
and automates source code related operations

Overview of the CAS system

CAS

BAS
Build Awareness Service

Provides information
gathered during the build
process

FTDB
Function/Type database

Transforms selected features
from relevant source files
into easily accessible format

Main focus on automation of
vulnerability detection

Code Aware Services

Useful in various S/W
engineering jobs: code
search, test automation,
fuzzing, code analysis etc.

Workshop 2022

BAS: Build Awareness Service
Main building blocks of the CAS system

CAS

FTDB
Function/Type database

Code Aware Services

BAS
Build Awareness Service

Workshop 2022

BAS overview
Build Awareness Service operation

There is a lot of information we can mine from the build process, e.g.:
• Configuration
• Structure
• Dependencies
• Tools used
• Commands

What is provided by BAS

1. Traces the build process with low overhead: ~5% for AOSP

2. Collects information on interconnections and dependencies
between source code components

3. Makes the information available to other applications

4. Works at scale, e.g., AOSP Android with 1.1 million files

Workshop 2022

BAS architecture
Acquiring build
information

High-level components of BAS

Collects build-specific data
and feeds it (possibly post-
processed) to the database
for later retrieval

Build tracer

Service that reads data from
database and serves it to
connected clients

Core engine (service) Specific applications/tools
that use build information
to operate efficiently

Applications

BAS Core (Build Information)

Database

DB

Applications

Web GUI

Configuration Aware
CodeSearch

Custom Makefile generation

IDE Project Generators

Compilation Databaseclang

gcc

…

Build system plugins

Build Tracer

Instrumented build

Custom Linux
kernel module

Workshop 2022

FTDB (Code DB)
Main building blocks of the CAS system

CAS

BAS
Build Awareness Service

Code Aware Services

FTDB
Function/Type database

Workshop 2022

FTDB overview
Introduction of Code Database

1. Database of selected code features easily accessible to external applications
2. Uses a libclang-based code processor to parse AST in-memory

3. Mines information on:

• All defined types, functions and globals

• Dependencies, function calls (including via pointers)

• Initialization and assignment of function pointers

• Source: type definitions, global initializers, function bodies (pre and post processed)

4. Makes the information available to other applications: JSON or DB

Workshop 2022

Creation of the FTDB
Function/Type DB on module basis

JSON database of selected code features easily accessible to external applications

Multiple source files merged into a final JSON representation

Shared Object/
Executable

source1

source2

sourceN

(…)

module

(parallel parsing)

CLANG
PROCESSOR

source1.JSON

source2.JSON

sourceN.JSON

module.json

Merged
Types & Functions

JSON database is useful for custom applications that operate on source code

Workshop 2022

FTDB Examples

Workshop 2022

Function information
in JSON

{
"name": "v4l2_ioctl",
"id": 3,
"fid": 0,
"fids": [0],
"nargs": 3,
"variadic": false,
"linkage": "internal",
"attributes": [],
"body": "static long v4l2_ioctl...",
"location": "drivers/media/v4l2-core/v4l2-dev.c:353",
"literals":{

"integer": [19, 25],
},
"calls": [2, 1],
"funrefs": [1, 2],
"refs": [12, 1, 4, 10, 13, 14, 16],
"types": [9, 10, 1, 4],
"locals": [

{
"id": 0,
"name": "filp",
"parm": true,
"type": 10,
"static": false,
"used": true,
"location":

"drivers/media/v4l2-core/v4l2-dev.c:37:"
},

],
}
// (...)]

static long v4l2_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)

{
struct video_device *vdev = video_devdata(filp);
int ret = -ENODEV;

if (vdev->fops->unlocked_ioctl) {
if (video_is_registered(vdev))

ret = vdev->fops->unlocked_ioctl(filp,
cmd, arg);

} else
ret = -ENOTTY;

return ret;
}

.c

.json

Extracting various function attributes, e.g.: name, source
attributes, argument information, call information, referenced
types, body, source literals, argument taints, selected
expressions, referenced variables, etc.

Workshop 2022

Workshop 2022

Function information
in JSON (cont.)

[// (...)
{

"member": [6, 0],
"kind": "member",
"offsetrefs": [

{
"kind": "parm",
"mi": 0,
"id": 1

}
],
"shift": [0, 0],
"access": [1, 0],
"csid": 0,
"expr": "[kernel/params.c:253:34]: kp->arg",
"ord": [29616],
"type": [3006, 3017]

},
// (...)
{

"kind": "unary",
"offsetrefs": [

{
"cast": 229,
"kind": "member",
"id": 1

}
],
"expr": "[kernel/params.c:253:24]: *(char **)kp->arg“,
"csid": 0,
"offset": 0,
"ord": [29615]

},
// (...)]

int param_set_charp(const char *val,
const struct kernel_param *kp) {
if (strlen(val) > 1024) {

return -ENOSPC;
}
maybe_kfree_parameter(*(char **)kp->arg);

if (slab_is_available()) {
*(char **)kp->arg =

kmalloc_parameter(strlen(val)+1);
if (!*(char **)kp->arg) return -ENOMEM;
strcpy(*(char **)kp->arg, val);

} else
*(const char **)kp->arg = val;

return 0;
}

.c

.json

Workshop 2022

Extracting variable information used in various expressions
inside function body, i.e., indirection operator, array expression,
member expression, offsetof, cast, if, switch, loop conditions,
return statement, etc.

Workshop 2022

Function information
in JSON (cont.)

Extracting variable information used in various expressions
inside function body, i.e., indirection operator, array expression,
member expression, offsetof, cast, if, switch, loop conditions,
return statement, etc.

static int param_array_get(char *buffer, const struct kernel_param *kp)
{

int i, off, ret;
const struct kparam_array *arr = kp->arr;
struct kernel_param p = *kp;

for (i = off = 0; i < (arr->num ? *arr->num : arr->max); i++)
{

/* Replace \n with comma */
if (i)

buffer[off - 1] = ',';
p.arg = arr->elem + arr->elemsize * i;
check_kparam_locked(p.mod);
ret = arr->ops->get(buffer + off, &p);
if (ret < 0)

return ret;
off += ret;

}
buffer[off] = '\0';
return off;

}

.c

.json

Workshop 2022

{
"kind": "array",
"offsetrefs":

[
{ "kind": "parm", "id": 0 },
{ "kind": "local", "id": 3 }

],
"basecnt": 1,
"expr": "[kernel/params.c:463:4]: buffer[off - 1]",
"csid": 2,
"offset": -1,
"ord":

[31783]
},
...
{

"kind": "logic",
"offsetrefs":

[
{ "kind": "local", "id": 4 },
{ "kind": "integer", "id": 0 }

],
"basecnt": 1,
"expr": "[kernel/params.c:467:7]: ret < 0",
"csid": 1,
"offset": 10,
"ord":

[31797]
}

Workshop 2022

Function information
in JSON (cont.)

Extracting variable information used in various expressions
inside function body, i.e., indirection operator, array expression,
member expression, offsetof, cast, if, switch, loop conditions,
return statement, etc.

.json

Workshop 2022

{
"kind": "cond",
"offsetrefs":

[
{

"kind": "logic",
"id": 30

}
],

"expr": "[kernel/params.c:460:20]:
i < (arr->num ? *arr->num : arr->max)",

...
{

"kind": "logic",
"offsetrefs":

[
{

"kind": "local",
"id": 4

},
{

"kind": "integer",
"id": 0

}
],

"expr": "[kernel/params.c:467:7]: ret < 0",
}

static int param_array_get(char *buffer, const struct kernel_param *kp)
{

int i, off, ret;
const struct kparam_array *arr = kp->arr;
struct kernel_param p = *kp;

for (i = off = 0; i < (arr->num ? *arr->num : arr->max); i++)
{

/* Replace \n with comma */
if (i)

buffer[off - 1] = ',';
p.arg = arr->elem + arr->elemsize * i;
check_kparam_locked(p.mod);
ret = arr->ops->get(buffer + off, &p);
if (ret < 0)

return ret;
off += ret;

}
buffer[off] = '\0';
return off;

}

.c

Workshop 2022

Type information
in JSON

{
"id": 0,
"fid": 0,
"class": "record",
"qualifiers": "",
"size": 640,
"location": "include/uapi/linux/videodev2.h:1644",
"union": false,
"str": "v4l2_input",
"refs": [1, 3, 1, 1, 1, 4, 1, 1, 5],
"refnames": [
"index","name","type","audioset","tuner",

"std","status","capabilities","reserved"],
"memberoffsets": [0,32,288,320,352,384,448,480,512],
"globalrefs": [],
"funrefs": [],

}

{
"id": 1,
"fid": 0,
"class": "builtin",
"qualifiers": "",
"size": 32,
"str": "unsigned int",
"refs": [],

}

struct v4l2_input {
unsigned int index;
unsigned char name[32];
unsigned int type;
unsigned int audioset;
unsigned int tuner;
unsigned long std;
unsigned int status;
unsigned int capabilities;
unsigned int reserved[3];

};

Extracting type attributes that allow to fully identify and
reconstruct the original type, i.e., type class, size, attributes,
member information, function, global and other types
references, etc.

.c

.json

Workshop 2022

Workshop 2022

Function ptr initialization
in JSON

{
"vars": [

{
"type": "v4l2_file_operations",
"name": "uvc_v4l2_fops",
"members": {

"0": "video_ioctl2"
},
"location": "drivers/usb/gadget/function/uvc_v4l2.c:356"

}
]

}
struct v4l2_file_operations {

long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
};

long int video_ioctl2(struct file *file,
unsigned int cmd, unsigned long int arg);

static const struct v4l2_file_operations dev_fops = {
.unlocked_ioctl = video_ioctl2,

};

Extracting initialization information (function references) of
function pointer members of structure types used by the global
variables

.c

.json

Workshop 2022

Workshop 2022

Generating dictionaries
for fuzzers
enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not) {

int type = MATCH_FULL;
int i;

if (buff[0] == '!') {
*not = 1; buff++; len--;

} else { *not = 0; }
*search = buff;
if (isdigit(buff[0])) { return MATCH_INDEX; }
for (i = 0; i < len; i++) {

if (buff[i] == '*') {
if (!i) {

type = MATCH_END_ONLY;
} else if (i == len - 1) {

if (type == MATCH_END_ONLY) { type =
MATCH_MIDDLE_ONLY; }

else { type = MATCH_FRONT_ONLY; }
buff[i] = 0;
break;

} else { return MATCH_GLOB; }
} else if (strchr("[?\\", buff[i])) { return MATCH_GLOB; }

}
if (buff[0] == '*') { *search = buff + 1; }
return type;

}

.c

0
1
'!'
'*'
"[?\\"

.txt

Workshop 2022

Workshop 2022

Other usage examples
Using CAS in S/W engineering jobs

Finally,
Automatically create test harness code in AoT

Examples

Automatically generate
syzkaller definitions

Quick preparation of fuzzing for
custom Linux kernel drivers

Automatically generate
structure-aware fuzzing
harness for libfuzzer [4]

Overcome the mostly manual
work of preparing protobuf
descriptions for C structure types

Workshop 2022
GitHub: https://github.com/Samsung/auto_off_target

AoT: Auto Off Target

Workshop 2022

Setup a testing
mobile network

Testing On-Target
Example: testing a message parser in the modem

An approach to testing S/W of complex embedded systems

Send test messages
over the air to the device

Testing
On-Target

When the device crashes
capture logs from the device
(if any), start offline code analysis

Reboot the device
and repeat

Difficult test setup for numerous complex embedded systems

Workshop 2022

Motivation

Can we thoroughly test system-level C/C++ software
regardless of the component and provide stronger quality
guarantees?

Many components, e.g., a modem or a bootloader, are
hard to test on-target (on the device) and difficult to
extract for off-target testing

Workshop 2022

Testing On-Target vs Off-Target
Extracting a part of the code to test in on a different host

Approach to testing S/W of complex embedded systems

Testing
Off-Target

BUG
FOUND

Use the available
toolchain:
gdb, coverage, etc.

Fuzz the harness
on a powerful
development machine

Prepare the test
harness for the
parser function

Easier and faster testing in a native development environment

Workshop 2022

Off-Target testing process
Preparation of the testable Off-Target (OT)

Source code testing MANY
TIMES FASTER on large servers
than on a mobile device

Step 2:
Compile and run on a server

Interesting parts of
source code with all
required dependencies

Step 1:
Extract from mobile

RUNNING
IMAGE

From a mobile device to a dev machine: might take days of manual labor

TARGET SOURCE

On-Target Off-Target

Mostly manual process until NOW!

Example: testing a message parser in the modem

Workshop 2022

AoT overview

Based on the information
provided by CAS, AoT
automatically creates off-
target programs (OTs) in C

Automation

OTs are fully independent
from the original build
and source tree

Independent

Additionally, AoT helps
to recreate the
program state in OTs

Initialization

AoT provides support for
fuzzing (afl++) and symbolic
execution (KLEE)

Test support

As a result, pieces of
complex systems can be
thoroughly tested,
debugged and analyzed

Importantly, we can now
easily run KLEE on these
complex targets

RESULT
Overview

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Build the target source code (once)

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Extract information about the built modules

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Extract source information, including types, globals,
functions, and their dependencies

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Base functions are the functions we want to test

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Recursively pull in all functions in a call hierarchy of
the tested function

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Cut off the code that is outside of the current module
+ generate stubs

Workshop 2022

AoT implementation: cut-off

Foo1

Internal
Functions

External
Functions

Foo2 Foo3

Foo4

Foo5

Foo8Foo7Foo6

(…)(…)(…)

Base Functions

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Provide program state initialization, e.g., allocate
memory for pointers

Workshop 2022

AoT implementation

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

Code DB

Apply fuzzing, symbolic execution or other
techniques to test the off-target

Workshop 2022

AoT: Smart Init
Initialization of the OT internal state

01 #define SIZE 10

02 #define SIZE_A 15

03 globtype_t g[SIZE];

04 rettype_t arr[SIZE_A];

05

06 rettype_t foo (size_t x, struct B* y) {

07 if (x != SIZE) return 0;

08 for (int i = 1; i < x; ++i) {

09 int selector = bar(i) + g[i];

10 if (selector < SIZE_A) return arr[selector];

11 }

12 return y->member;

13 }

.c

Failure to allocate memory
for “y” results in a crash on line 12

Workshop 2022

struct A{

…

T* member1;

…

} x;

AoT: Smart Init
Initialization of the OT internal state (cont.)

01 int foo (void* x) {

02 struct A* a = (struct A*)x;

03 struct B* b = (struct B*)a->member1 ;

04 struct C* c = b - offsetof(struct C*, member2);

.c

Often, the type to allocate is not
known from the function arguments

struct C{

…

struct B* member2;

…

} c;

Correct allocation involves
creating 2 objects
and setting a pointer

Workshop 2022

AoT: Smart Init
Initialization of the OT internal state (cont.)

To discover the types to use, AoT implements a heuristic based on static
analysis of the information provided by FTDB

AoT parses a trace created by 3 code events:

• Casts

• Member accesses

• Use of offsetof

AoT checks in FTDB which struct members are used in the OT
and initializes only them

Workshop 2022

AoT: Smart Init
Initialization of the OT internal state (cont.)

01 #define SIZE 10

02 #define SIZE_A 15

03 globtype_t g[SIZE];

04 rettype_t arr[SIZE_A];

05

06 rettype_t foo (size_t x, struct B* y) {

07 if (x != SIZE) return 0;

08 for (int i = 1; i < x; ++i) {

09 int selector = bar(i) + g[i];

10 if (selector < SIZE_A) return arr[selector];

11 }

12 return y->member;

13 }

.c

The memory allocation is not enough,
we need to know the right values

Workshop 2022

AoT: Program State Discovery
Setting the OT internal state to proper values

• In order to discover usable values of variables, AoT uses hybrid fuzzing

• First AoT runs KLEE, then AFL++

• Entire initialized program state in OT is treated as symbolic
• Thanks to symbex, OT code can be run without or with little knowledge on the

original system state
• We over approximate: some values will not be allowed on-target

• That results in FPs

• AoT implements a mechanism to reject FPs based on DFSAN

• We apply taints to user inputs and look for tainted data accesses

when an issue is detected

Workshop 2022

AoT evaluation
1. We evaluated AoT on 4 targets:

T1: AOSP kernel for oriole (Pixel 6) -> 50k functions

T2: The Little Kernel Embedded OS -> 1k functions

T3: Das U-Boot bootloader -> 2k functions

T4: The IUH module from Osmocom -> 2k functions

2. Cut-off based on the same compiled module

3. We excluded OT entry points with assembly

Workshop 2022

AoT evaluation
Automated run results

The aim: see on how many OTs we can run symbex and fuzzing
out of the box

Workshop 2022

AoT evaluation
Human in the loop exercise: a bug finding campaign with AoT

• AoT run on 9,396 functions – kernel entry points from Pixel phones

• After FPs rejection, 312 OTs left for manual inspection

• Results: 7 bugs found

• Discovered 3 new security issues, two were already assigned CVEs

• Rediscovered CVE-2020-13143, which was fixed in a newer version

• Found 3 non-security out of bound reads

Workshop 2022

AoT limitations
Where AoT is still imperfect

• Currently AoT works with C code only

• By default, code with assembly is not included in OTs

• Incomplete modelling of program state can cause FPs

• Program state initialization in OTs is an open and orthogonal research

problem

Workshop 2022

AoT future work
How to make AoT even better

• Implement support for C++ in CAS and AoT

• Improve program state initialization, e.g., with the use of on-device

dumps performed with our tool kflat [3]

Workshop 2022

Summary
Testing complex embedded systems is both necessary and hard

We demonstrate that AoT
is a viable bug finding approach

We presented new projects CAS and AoT aimed at complex systems:

CAS provides information extracted from the build and from the code
AoT automatically generates usable test harnesses in C

CAS provides data useful in dynamic testing research
AoT can be used to run KLEE on complex embedded systems code

Workshop 2022

Summary
Core engines of CAS and AoT and our memory dump tool kflat are open source

[1] CAS: https://github.com/samsung/cas
[2] AoT: https://github.com/Samsung/auto_off_target
[3] Kflat: https://github.com/Samsung/kflat
[4] Bartosz gave a talk on CAS at Linux Security Summit NA 2022

https://youtu.be/M7gl7MFU_Bc?t=648
[5] We have an upcoming ASE 2022 paper on CAS & AoT:

“Auto Off-Target: Enabling Thorough and Scalable Testing for Complex Software Systems”,
https://samsung.github.io/auto_off_target/paper

We welcome contributions,
bug reports and feedback!

https://github.com/samsung/cas
https://github.com/Samsung/auto_off_target
https://github.com/Samsung/kflat
https://youtu.be/M7gl7MFU_Bc?t=648
https://samsung.github.io/auto_off_target/paper

