
CONFETTI: Amplifying
Concolic Guidance for Fuzzers

James Kukucka, Luís Pina, Paul Ammann, Jonathan Bell

Motivation - CVE-2021-45105 log4j DoS Vulnerability

https://www.netskope.com/blog/cve-2021-44832-new-vulnerability-found-in-apache-log4j#:~:text=Summary,modify%20the%20logging%20configuration%20file. 2

Introduction: Parametric Fuzzers vs Greybox Fuzzers

Application Logic

Seed:
<xml></xml>

Guidance

Mutator
Concrete Input: <xml>^/xml>

Coverage
Instrumentation

Biases

Syntactic Parser

System Under Test

3

State-of-the-art
Seed: 0001

Guidance

Mutator

Parametric
Input: 0011

Coverage
Instrumentation

Biases

Syntactic Parser

System Under Test

Concrete
Input:

<xml>
 <name>
 value
 </name>
</xml>

Application Logic

4

Our Solution, CONFETTI, leverages state-of-the-art
parametric fuzzing and novel hinting

CONFETTI (CONcolic Fuzzer Employing Taint Tracking Information)

5

Our Solution, CONFETTI, leverages state-of-the-art
parametric fuzzing and novel hinting

CONFETTI (CONcolic Fuzzer Employing Taint Tracking Information)

Parametric Fuzzing

6

Our Solution, CONFETTI, leverages state-of-the-art
parametric fuzzing and novel hinting

CONFETTI (CONcolic Fuzzer Employing Taint Tracking Information)

Targeted Hinting

Taint Tracking Concolic Execution

Parametric Fuzzing

7

Our Solution, CONFETTI, leverages state-of-the-art
parametric fuzzing and novel hinting

CONFETTI (CONcolic Fuzzer Employing Taint Tracking Information)

Global HintingTargeted Hinting

Taint Tracking Concolic Execution

Parametric Fuzzing

8

Example of applying targeted hints

9

Example of applying targeted hints

10

Example of applying targeted hints

11

Example of applying targeted hints

12

Example of applying targeted hints

13

CONFETTI uses a non-blocking Architecture

14

CONFETTI uses a non-blocking architecture

15

KNARR builds path conditions by propagating taint tags
from parametric bytes to concrete input
● KNARR is able to taint parametric input bytes and propagate taint tags

with minimal changes to underlying generators.
● Strings are tainted at the character level, and operations such as

equals() and startsWith() are instrumented.
● KNARR extends the taint engine to create an abstract expression as part

of the taint tag, building it as taints are propagated to new variables.
● When a tainted input reaches a branch, the taint tag of the branch is the

complete symbolic expression from the parametric input.
● KNARR facilitates concolic execution in this way, as opposed to pure

symbolic execution.

16

The CONFETTI coordinator ingests constraints from
KNARR to attempt to discover new branches

● In the style of concolic execution, the CONFETTI Coordinator targets
branches based on whether they are uncovered and whether their branch
predicate contains some part of the input

● Branch is negated and all other constraints are dropped, then it is passed to
Z3.

● Helpful to cover branches the fuzzer got stuck on.
● User-configurable parameters to cut down on wasted solving time.

17

Taint Tracking Doesn’t Capture Relationships Through
Control Flow

18

Global hinting allows CONFETTI to explore branches it
could not otherwise.

Static Dictionary

“abc”
“def”

“abcdef”

Taint Tracking

Static Dictionary

“abc”
“def”

Global Hints

”abcdef”

s1 = generateString(r); // picks randomly from static dictionary to yield “abc”
s2 = generateString(r); // picks randomly from global hints to yield “abcdef”

public String generateString(ParametricInputArray r) {
if(r.nextBoolean())
{

return static_dict[r.nextInt()];
}
return global_hints[r.nextInt()];

}

Global hinting allows CONFETTI to explore branches it
could not otherwise.

CONFETTI leverages both targeted and global hints in
guiding the fuzzer

● CONFETTI does not seek to purely perform whitebox analysis, but to guide
the fuzzing process so that it maximizes the efficiency of greybox fuzzing.

● It does this by leveraging several choices when mutating an input:
○ Apply a single targeted hint
○ Apply multiple targeted hints
○ Mutate, which may or may not apply global hints

● Hints are inheritable meaning they are preserved in future generations (if an
input reveals new coverage and is fuzzed again).

● Stacking hints allows for more complex inputs that may reveal new coverage.

21

 Total Branch Coverage Bugs Found

Program
Total

Branches Zest CONFETTI_tgt CONFETTI Zest CONFETTI_tgt CONFETTI

ant 23,361 859 871 872 1 1 1

bcel 6,220 1361 1423 1421 2 3 5

closure 49,602 10,545 10,640 11,458 4 8 15

maven 5,858 821 853 857 0 0 0

rhino 25,035 3,757 3,534 3,744 4 4 4

On most benchmark programs, the use of CONFETTI’s
global hinting with targeted hinting resulted in higher
branch coverage and more bugs found.

CONFETTI finds more bugs, including bugs that the baseline
fuzzer cannot

Issue # JQF-Zest CONFETTI_tgt CONFETTI
A1 100 100 100

Issue # JQF-Zest CONFETTI_tgt CONFETTI
B1 100 0 0
B2 100 100 0
B3 0 0 40
B4 0 0 80
B5 0 5 100
B6 0 20 100

Issue # JQF-Zest CONFETTI_tgt CONFETTI
C1 100 100 100
C2 90 85 5
C3 80 70 45
C4 0 45 95
C5 0 15 90
C6 0 0 5
C7 0 20 100
C8 0 0 100
C9 15 15 20
C10 0 5 100
C11 0 0 100
C12 0 0 35
C13 0 0 20
C14 0 0 5
C15 0 0 5

Issue # JQF-Zest CONFETTI_tgt CONFETTI
R1 100 100 100
R2 100 100 100
R3 100 100 100
R4 100 100 100

Our evaluation, all data and CONFETTI are archived and
open-source

https://doi.org/10.6084/m9.figshare.16563776 https://github.com/neu-se/confetti

24

Continuous Integration workflow allows for easy evaluation

25

26

