
1

Finding Real Bugs in Big Programs with
Incorrectness Logic

Quang Loc Le

University College London

September, 2022

OOPSLA’22
with Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter O’Hearn

1 / 35

2

First Axiom of a Bug Catching Tool at Scale

“Don’t Spam the Developers!”

2 / 35

3

Interaction with OpenSSL Developers

Pulse-X found 41 bugs, 15 were unknown previously
We committed fixes in pull request #15834

955 static int ssl_excert_prepend(SSL_EXCERT **pexc) {
956 SSL_EXCERT *exc = app_malloc(sizeof(*exc),
957 "prepend cert");
958
959 + if(exc == NULL)
960 + return 0;
961 memset(exc, 0, sizeof(*exc));
962 ...
963 }

OpenSSL developer:

False positive, app malloc() doesn’t return if the allocation fails.

3 / 35

4

Interaction with OpenSSL Developers - Error trace
apps/lib/s_cb.c:959: error: Nullptr Dereference
PISL found a potential null pointer dereference on line 959.

apps/lib/s_cb.c:957:23: in call to ‘app_malloc‘
955. static int ssl_excert_prepend(SSL_EXCERT **pexc)
956. {
957. SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");

ˆ
958.
959. memset(exc, 0, sizeof(*exc));

test/testutil/apps_mem.c:16:16: in call to ‘CRYPTO_malloc‘ (modelled)
14. void *app_malloc(size_t sz, const char *what)
15. {
16. void *vp = OPENSSL_malloc(sz);

ˆ

test/testutil/apps_mem.c:16:16: is the null pointer
14. void *app_malloc(size_t sz, const char *what)
15. {
16. void *vp = OPENSSL_malloc(sz);

ˆ
17.
18. return vp;

...
4 / 35

5

Interaction with OpenSSL Developers - grep search

another app malloc in apps/lib/apps.c

1 void app_bail_out(char *fmt, ...) {
2 va_list args;
3 va_start(args, fmt);
4 BIO_vprintf(bio_err, fmt, args);
5 va_end(args);
6 ERR_print_errors(bio_err);
7 exit(EXIT_FAILURE);
8 }
9

10 void *app_malloc(size_t sz, const char *what) {
11 void *vp = OPENSSL_malloc(sz);
12
13 if (vp == NULL)
14 app_bail_out("%s: Could not allocate %zu bytes

for %s\n",
15 opt_getprog(), sz, what);
16 return vp;
17 }

5 / 35

6

Interaction with OpenSSL Developers - accept fix

Then, he created pull request #15836 to commit the fix.

6 / 35

7

Pulse-X: A bug catching tool

Prove the presence of bugs

Precision
Doesn’t Spam the Developers.

Scalability
3-dimensional scale: code (large codebases), people (big team),
velocity (high frequency of code changes)

continuous integration (CI) reasoning

7 / 35

8

Pulse-X⇐ Infer

Compositional Shape Analysis by Means of Bi-Abduction (POPL’09)

analysed Linux Kernel 2.6.25.4 (2.473 MLOC) < 30 mins
led to Facebook’s Infer in 20131

1http://www.finsmes.com/2013/07/facebook-acquires-monoidics.html
8 / 35

9

Pulse-X⇐ Infer

Compositional Shape Analysis by Means of Bi-Abduction (POPL’09)

Two concerns:
Clash with foundations

Report bugs compositionally

9 / 35

10

Clash with foundations

Prove the presence of bugs

Under-approximation vs. Over-approximation

10 / 35

11

Clash with foundations

Under-approximate reasoning

symbolic execution (KLEE),
symbolic model checking (CBMC)

whole-program analysis

advantages:
report true bugs

disadvantages:
not scaled (for CI)
memory model: does not support
symbolic heaps

11 / 35

12

Clash with foundations

Over-approximate reasoning

compositional reasoning by
means of bi-abduction (Infer)

begin-anywhere analysis

advantages:
scalability
memory model: separation
logic

disadvantages:
may report false positives

12 / 35

13

Clash with foundations

Prove the presence of bugs

under-approximate reasoning over-approximate reasoning

symbolic execution (KLEE), sym-
bolic model checking (CBMC)

compositional reasoning by
means of bi-abduction (Infer)

whole-program analysis begin-anywhere analysis

not scaled scalability

memory model: does not support
symbolic heaps

memory model: separation logic

true bugs false positives

How to achieve both scalability and precision?
13 / 35

14

Clash with foundations

A scalable and precise bug-finding tool
true bugs and scalability

1 under-approximate analogue of Infer; or

2 compositional analogue of KLEE, CBMC

memory model:
under-approximate analogue of separation logic

⇒ incorrectness separation logic (CAV’20)

14 / 35

15

Clash with foundations: This work

an under-approximate analogue of Infer using
incorrectness separation logic

15 / 35

16

Compositional reasoning

The analysis result of a composite program is defined in terms of
the analysis results of its parts and a means of combining them.

part: procedures

analysis result: under-approximate specs i.e., incorrectness
triples2

a means: under-approximate bi-abduction
2Peter O’Hearn. Incorrectness Logic. POPL’20

16 / 35

17

Incorrectness triple3

Under-approximate triple

[P] c [Q] iff post(c)P ⊇ Q

For all states s in Q, s can be reached by running c on some s′ in P

Incorrectness triple

[P] c [ε : Q]

ε: exit condition
[ok: normal execution]
[er: erroneous execution]

3Peter O’Hearn. Incorrectness Logic. POPL’20
17 / 35

18

Incorrectness triple: Examples

Example 1:

Procedure spec: [y 7→Z]free(y) [ok : y 67→]

if y points to a heap cell at the beginning then the cell will be
invalidated after executing the free procedure.

Example 2:

Procedure spec: [y 67→]free(y) [er : y 67→]

the spec encodes a double-free error.

18 / 35

19

Analysis problem

1 void f(bool b,int ∗ x){
2 if(b){
3 free(x);
4 ∗x := 1;
5 }
6 }

2

3

4

5

assume(b = 0)

assume(!(b = 0))

free(x)

∗x := 1

Given:
a program: control flow graphs

specs of atomic procedures and libraries are given
Question:

find spec of the program

19 / 35

20

Under-approximate bi-abduction

Over-approximate bi-abduction question:

A ∗ ?M ` G ∗ ?F

Under-approximate bi-abduction question:

A ∗ ?F ` G ∗ ?M

abductive inference: find F
anti-abductive inference: find M

20 / 35

21

Compositional Bug Reporting: Existing approaches

Without considering the entire program, how do we
know a bug is true?

Do you report a null pointer
dereference?

1 void f(int* x) {
2 *x = 42;
3 }

Infer uses heuristics:
surfacing failed proofs and bug patterns.

UC-KLEE uses heuristics with annotations
OpenSSL-1.0.2: 11 real bugs / 474 errors found = 2.32%

Pulse-X: [x 7→X ∗ X 7→]f(x) [ok : x 7→X ∗ X 7→42]

[x 7→null]f(x) [er : x 7→null]
[x 67→]f(x) [er : x 67→]

21 / 35

22

Compositional Bug Reporting: Pulse-X

1 static int ssl_excert_prepend(SSL_EXCERT **pexc) {
2 SSL_EXCERT *exc = app_malloc(sizeof(*exc),
3 "prepend cert");
4
5 memset(exc, 0, sizeof(*exc));
6 ...
7 }

Listing 1: OpenSSL null pointer bug in ssl excert prepend.

Manifest error
for any value of input exc, this error happens.
any call to ssl excert prepend will trigger the error.

22 / 35

23

Compositional Bug Reporting: Pulse-X

1 int chopup_args(ARGS *arg, ...) {
2 int num,i;
3 ...
4 if (arg->count == 0) {
5 arg->count=20;
6 arg->data= (char **)OPENSSL_malloc(...);
7 }
8 for (i=0; i<arg->count; i++)
9 arg->data[i]=NULL;

10
11 }

Listing 2: Latent error in chopup args.

Latent error
only program paths with inputs arg−>count = 0 lead to error.
some call to chopup args will trigger the error.

23 / 35

24

Compositional Bug Reporting: Pulse-X

1 int main(int Argc, char *ARGV[]){
2 ARGS arg;
3 ...
4 arg.count=0;
5 ...
6 if (!chopup_args(&arg,..)) break;
7 ...
8 }

Listing 3: Manifest error in main of openssl.c.

Latent error
only paths with inputs arg−>count = 0 lead to error.
some call to chopup args will trigger the error.

the call in main

24 / 35

25

Compositional Bug Reporting: True Positives Theorem

Theorem (Manifest errors)

An error triple |= [p] C [er : q] with q , ∃
−→
Xq. κq ∧ πq denotes a manifest

error if:
1 p ≡ emp ∧ true ;
2 sat(q) holds;
3 locs(κq) ⊆

−→
Xq, where locs(.) is the set of heap locations; and

4 for all −→v , sat(πq[
−→v /
−→
Y ∪ locs(κq)]) holds, where

−→
Y = flv(q).

locs(emp),∅ locs(x 7→X),{x} locs(X 7→V)=locs(X 67→),{X}
locs(κ1 ∗ κ2), locs(κ1) ∪ locs(κ2)

25 / 35

26

Implementation: Scientist vs. Engineer

“Scientists seek perfection and are idealists. ... An
engineer’s taks is to not be idealistic. You need to be

realistic as you have to compromise between
conflicting interests.” Tony Hoare.

26 / 35

27

Implementation: with an Incomplete Solver

speed vs. precision
dumb but fast vs. smart but slow

1 SAT solver: equalities

2 pointer functions, unknown functions

Pulse-X might produce false positives

27 / 35

28

Evaluation

data set: OpenSSL and 8 open-sourced C++ projects developed and
maintained by Facebook.

practical bug classification: for each issue found
true bug: it has been fixed

pending bug: the fix has not accepted yet

false positive: we could not find a fix

fix rate = number of true bugs/total issues found

Experimental plan:
run Pulse-X and Infer on each project, collect timings and bugs
found

Scalability: compare the timings

Precision: check/classify the bugs found on OpenSSL
28 / 35

29

Evaluation: Goals

Hypothesis H1. On OpenSSL-1.0.1h Pulse-X has a superior fix
rate to the present-day Infer.
Hypothesis H2. Pulse-X finds new bugs worth fixing in current
OpenSSL.
Hypothesis H3. Pulse-X is broadly comparable with Infer in terms
of performance, while reporting a comparable number of bugs.

29 / 35

30

Evaluation: Summary

New bugs with OpenSSL-3.0.0
On average, fix rate: Pulse-X: 61% and Infer: 23% - 59%

Pulse-X found 15 new bugs in OpenSSL-3.0.0

Pulse-X’s performance is as good as Infer’s.

Pulse at Facebook: fix rate is 82%.

30 / 35

31

Take away

Pulse-X: A scalable compositional bug-finding tool
under-approximate bi-abduction
true-positives theorem

Experiments, Pulse-X
found 41 bugs in OpenSSL, 15 were previously unknown.
fix rate might be 2.7x higher than Infer
as scalable as Infer

Other directions
1 compositional symbolic execution/bounded model checking

2 bug finding tools for concurrent programs

3 backward variant inference for loops

4 test case generation (e.g., with directed fuzz testing)
31 / 35

32

Evaluation: H1

Old bugs with OpenSSL-1.0.1h
8,658 procedures, 444K lines of code, 2.83M of bytes of code

original Infer found 15 bugs in 20154

Results:
Pulse-X: 26 issues - 19 true bugs, 7 false positives

fix rate: 73%

Infer: 80 issues - 39 true bugs (8 overlap), 41 false positives
fix rate: 48.75%

4https://mailing.openssl.dev.narkive.com/2DbkkYzD/
openssl-org-3403-null-dereference-and-memory-leak-reports-for-openssl-1-0-1h-from-facebook-s-infer

32 / 35

https://mailing.openssl.dev.narkive.com/2DbkkYzD/openssl-org-3403-null-dereference-and-memory-leak-reports-for-openssl-1-0-1h-from-facebook-s-infer
https://mailing.openssl.dev.narkive.com/2DbkkYzD/openssl-org-3403-null-dereference-and-memory-leak-reports-for-openssl-1-0-1h-from-facebook-s-infer

33

Evaluation: H2

New bugs with OpenSSL-3.0.0
22,979 procedures, 754K lines of code, 8.55M of bytes of code

Results:
Pulse-X: 30 issues - 15 true bugs, 5 pending, 10 false positives

fix rate: 50%
pull requests: #158345, #158366, #159107,

run Pulse-X on the fix, the bug does not occur.

Infer: 116 issues - 7 true bugs (overlap), 40 false positives, 69
unchecked

fix rate: 0.06% - 65%

On average, fix rate: Pulse-X: 61% and Infer: 23% - 59%
5https://github.com/openssl/openssl/pull/15834
6https://github.com/openssl/openssl/pull/15836
7https://github.com/openssl/openssl/pull/15910

33 / 35

https://github.com/openssl/openssl/pull/15834
https://github.com/openssl/openssl/pull/15836
https://github.com/openssl/openssl/pull/15910

34

Evaluation: H3

Project #files LoC(k) #procs BoC(m)
OpenSSL-1.0.1h 1536 444 8658 2.83
OpenSSL-3.0.3 2452 754 22979 8.55
wdt 194 25.4 6679 8.5
bistro 424 37.6 7290 9.7
SQuangLe 36 8.3 12938 17.9
RocksDB 1291 411.7 14669 18
FbThrift 5639 937.7 21753 29
OpenR 341 78.3 124461 195.7
Treadmill 409 25.3 236676 393.7
Watchman 557 63.2 245661 407.3

34 / 35

35

Evaluation: H3

35 / 35

	Context
	Incorrectness Separation Logic
	Problem
	Conclusion

