
EmpiricalStudyonApplyingProgramAnalysis
andTestingTools toStudentCode

Frederico Ramos, Filipe Marques, Pedro Adão, Nuno Santos, and José Fragoso Santos
INESC-ID & Instituto Superior Técnico, University of Lisbon

KLEE Workshop 2022

Overview Abstract
We perform the first empirical study on the application of
program analysis and software testing tools to student code.
To conduct this study, we set up a large curated dataset
consisting of 1,160 student projects implemented in the C
programming language, totalling 405k LoC and averaging
349 LoC per project. These projects were anonymised and
annotated with the exact locations where memory errors oc-
cur. We are in the process of evaluating the best-performing
tools submitted to the SV-Comp 2022 competition against
the constructed dataset. For this evaluation, we performed
a non-trivial instrumentation of the dataset. Preliminary
results indicate that these tools perform well and that they
should play a more prominent role in undergraduate Com-
puter Science curricula.

Annotated Dataset (I)

Original Dataset. The table below presents the
benchmark suite characterisation. For each project,
we show the number of lines of code of the sample
project solution developed by the faculty (SLoC),
the number of student projects (nproj), the total
number of lines of code of the student projects
(TLoC), and the average number of lines of code
per student project (AvgLoC).

Project SLoC nproj TLoC AvgLoC
P1 256 398 140,349 352.64
P2 529 349 176,547 505.86
P3 166 84 17,697 210.68
P4 307 67 21,849 326.10
P5 416 117 17,145 146.54
P6 208 77 20,278 263.35
P7 100 27 4,048 149.93
P8 304 15 2,691 179.40
P9 204 15 2,399 159.93
P10 108 11 1,938 176.18

Total 2,598 1,160 404,941 349.09

Dataset Bugs. We considered the following types
of memory bugs: heap-overflows (HO), stack-overflows
(SO), data-overflows (DO), allocation-size-to-big (ASTB),
segmentation-violation (SEGV), free-errors (FE), and other
bugs (OTHER).

Project HO SO DO ASTB SEGV FE OTHER

P1 1 117 13 0 47 0 6
P2 19 6 1 0 23 21 0
P3 175 38 1 64 154 7 1
P4 220 43 0 51 174 6 1
P5 143 78 10 91 180 10 2
P6 143 61 4 64 208 3 43
P7 40 13 0 22 45 2 1
P8 23 10 0 10 32 1 2
P9 5 1 0 0 1 0 0
P10 31 0 0 9 26 5 0

Total 800 367 29 311 890 55 56

To collect the bugs of each project, we: (i) generated 1,000
inputs using project-specific input generators; (ii) compiled
and ran student solutions using AddressSanitizer on the gen-
erated inputs; and (iii) collected all reported errors.

Vulnerability Report. We anonymised and anno-
tated the student projects: for each project, we cre-
ated a JSON filed with a description of its memory
bugs. For each bug, we stored: the bug type, the
line number in which the bug occurs, the function
in which the bug was triggered, and file name of the
program. An example is given below:

[
{

"bug_type" : "stack-overflow",
"line" : "121",
"procedure" : "main",
"file" : "alunos/al011/p1.c",
"witness" : "random_20.in"

},{
"bug_type" : "stack-buffer-overflow",
"line" : "147",
"procedure" : "main",
"file" : "alunos/al001/p1.c",
"witness" : "random_60.in"

}
]

Instrumentor (II)
Code Instrumentation. We instrumented the targeted C
code, replacing calls to libc functions that read formatted
input with tool-specific calls responsible for generating the
appropriate symbolic values, as illustrated by the instrumen-
tation of the scanf function below:

struct A { int value; char name[SIZE]; }
...
scanf("\%s:\%d", obj.name, &obj.value);

↓
for (int i = 0; i < SIZE; ++i)

obj.name[i] = __VERIFIER_nondet_char();
obj.name[SIZE-1] = '\0';
obj.value = __VERIFIER_nondet_int();

Executor (III)
Tool Selection Criteria. We selected the evaluated tools
according to the following criteria:

Criteria Tools

1.
5 best-performing tools in the
Cover-Error Category of
Test-Comp 2022.

FuSeBMC
LibKluzzer
VeriFuzz
KLEE
Symbiotic

2. Winners of Memsafety from
SV-Comp 2022.

Symbiotic
CPAchecker

3. Other static analysis tools Infer & Pulse

If you would like us to consider your tool,
come talk to us!

Validator (IV)
Bug Reports. We will extend the dataset with the bugs
identified by the tools that do not report false positives.
The job of the validator component is to confirm the bugs
reported by the tested tools when they come with a concrete
model and to extend the dataset with the confirmed bugs.

ktest file : 'test000007.ktest'
args : ['Projects/1/preprocessed/1.bc',

'-sym-stdin', '10']↪→
num objects: 7
...
object 4: name: 'sym_int'
object 4: size: 4
object 4: data: b'\x00\x00\x00\x80'
object 4: hex : 0x00000080
object 4: int : -2147483648
object 4: uint: 2147483648
...

Preliminary Results
The table on the right presents the preliminary results ob-
tained when running the analysed tools against our curated
dataset. For each project, the table shows the total and
average number of errors, e.g. Total/Average.
• The static analysis tools report ≈ 137% more bugs than

symbolic execution tools — this is expected as these
tools may also report false positives.

• Symbolic execution tools uncover ≈ 216% more bugs
than the project-specific fuzzers.

• A final analysis of precision and recall for the analysed
tools will be done after the bugs identified by symbolic
execution tools are validated and integrated in the cu-
rated dataset.

Project Random Infer Pulse Symbiotic KLEE

P1 184/1 1,456/4 1,504/4 1,595/5 1,303/3
P2 70/1 836/9 1,270/14 621/2 616/2
P3 440/5 390/5 780/9 235/3 365/4
P4 495/8 441/7 862/13 389/6 452/7
P5 514/4 467/4 858/7 348/3 493/4
P6 526/7 385/5 733/9 267/4 427/6
P7 123/5 112/4 214/9 70/3 151/6
P8 78/5 41/3 89/6 48/4 68/5
P9 7/1 106/7 150/10 10/1 11/1
P10 71/7 42/4 118/11 48/4 51/5

Total 2,508/4 4,276/5 6,579/9 3,631/4 3,936/4

Conclusions
We presented ongoing work on the first empirical study
on the application of state-of-the-art program analysis and
testing tools to student projects. So far, we have: (i) set
up a curated dataset of anonymised student projects; (ii)
annotated the dataset with memory error locations; and,
(iii) ran KLEE, Symbiotic, Infer, and Pulse against our
dataset. The results indicate that all tools perform well,
uncovering more memory bugs than those present in the
original dataset.

Acknoledgments. The authors were supported by Por-
tuguese funds through Fundação para a Ciência e a
Tecnologia (UIDB/50021/2020, INESC-ID multi-annual
funding program) and projects INFOCOS (PTDC/CCI-
COM/32378/2017) and DIVINA (CMU/TIC/0053/2021).

