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• Advanced symbolic execution techniques benefit from or outright require 
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– POR-SE [Symbolic partial-order execution for testing multi-threaded 

programs. Schemmel et al. CAV 2020]

– SYMLIVE [Symbolic liveness analysis of real-world software. Schemmel et 

al. CAV 2018]

– MOKLEE [Running symbolic execution forever. Busse et al. ISSTA 2020]
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KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

1. Support for external calls (addresses valid in host process)

2. Cross-run determinism (multiple runs should behave the same)

3. Cross-path determinism (multiple paths should behave the same)

4. Spatially distanced allocations (misindexing an array should trap)

5. Temporally distanced allocations (use-after-free should trap)

6. Stability (minor changes should not snowball)
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General Architecture

• mmap one large region and attach forkable metadata to the initial state

– This region is only used to provide addresses and for external calls

– Object data is already state-dependent

• Categorize allocations to reduce snowball effect

– Multiple allocators, especially to disconnect stack and heap

– Binned allocations
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Memory Consumption
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Solver Time

DFS RNDCOV
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MOKLEE: Fewer Diverging Locations
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char* s = (char*)dest;
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const char* p = (const char*)src;

if (p >= s) {

while (n) {

*s++ = *p++;

--n;

}

MOKLEE: Fewer Divergences in memmove

} else {

while (n) {

--n;

s[n] = p[n];

}

}

return dest;

• uClibc’s memmove is sensitive to memory layout
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Summary & Conclusion

• The memory allocator has significant impact on dynamic symbolic execution

• We implemented KDALLOC in KLEE and show:

– Performance and memory consumption are not impacted negatively

– Use-after-free detection is improved (general benefit)

– Specific benefits for multiple DSE-based techniques

• KDALLOC is becoming part of mainline KLEE!

14



char *mallocfree() {

char *s = strdup("A");

free(s);

char *t = strdup("B");

return s;

}

Guaranteed Use-After-Free Behavior

int main(void) {

char *s = mallocfree();

puts(s);

return 0;

}

• KDALLOC guarantees detection when quarantine is enabled
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Query Structure with KDAlloc
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Query Structure without KDAlloc
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