
A Deterministic Memory Allocator

for Dynamic Symbolic Execution

Daniel Schemmel, Julian Büning, Frank Busse, Martin Nowack, Cristian Cadar



int x = input();

if (x == 0) {

abort();

} else {

return x;

}

Dynamic Symbolic Execution

2



int x = input();

if (x == 0) {

abort();

} else {

return x;

}

Dynamic Symbolic Execution
state 1

x≔ 𝜆 ,
state 1

x≔ 𝜆 ,

2



int x = input();

if (x == 0) {

abort();

} else {

return x;

}

Dynamic Symbolic Execution
state 1

x≔ 𝜆 ,
state 1

x≔ 𝜆 ,

state 1

x≔ 𝜆 , 𝜆 = 0
state 1

x≔ 𝜆 , 𝜆 = 0

2



int x = input();

if (x == 0) {

abort();

} else {

return x;

}

Dynamic Symbolic Execution
state 1

x≔ 𝜆 ,
state 1

x≔ 𝜆 ,

state 1

x≔ 𝜆 , 𝜆 = 0
state 1

x≔ 𝜆 , 𝜆 = 0

state 1’

x≔ 𝜆 , 𝜆 ≠ 0
state 1’

x≔ 𝜆 , 𝜆 ≠ 0

2



• What is the address of x?

Address Translation in KLEE

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1

state 2state 2

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE

state 2state 2

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE

state 2state 2

0xDEADBEEF

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE00 00 00 0000 00 00 00

state 2state 2

0xDEADBEEF

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE00 00 00 0000 00 00 00

state 2state 2

0xDEADBEEF

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE00 00 00 0000 00 00 00

state 1’state 1’

state 2state 2

0xDEADBEEF

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE00 00 00 0000 00 00 00

state 1’state 1’ FF FF FF FFFF FF FF FF

state 2state 2

0xDEADBEEF

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE00 00 00 0000 00 00 00

state 1’state 1’ FF FF FF FFFF FF FF FF

state 2state 2

Used for external 

function calls

0xDEADBEEF

3



KLEE Process

• What is the address of x?

Address Translation in KLEE

state 1state 1 FE FE FE FEFE FE FE FE00 00 00 0000 00 00 00

state 1’state 1’ FF FF FF FFFF FF FF FF

state 2state 2

Used for external 

function calls

FE FE FE FEFE FE FE FE00 00 00 0000 00 00 00

0xDEADBEEF

0xFACEFEED

3



The Need for Deterministic Memory Allocation

• For experiments to be repeatable, memory allocation must be repeatable

4



The Need for Deterministic Memory Allocation

• For experiments to be repeatable, memory allocation must be repeatable

• Advanced symbolic execution techniques benefit from or outright require 

deterministic execution

4



The Need for Deterministic Memory Allocation

• For experiments to be repeatable, memory allocation must be repeatable

• Advanced symbolic execution techniques benefit from or outright require 

deterministic execution

– POR-SE [Symbolic partial-order execution for testing multi-threaded 

programs. Schemmel et al. CAV 2020]

4



The Need for Deterministic Memory Allocation

• For experiments to be repeatable, memory allocation must be repeatable

• Advanced symbolic execution techniques benefit from or outright require 

deterministic execution

– POR-SE [Symbolic partial-order execution for testing multi-threaded 

programs. Schemmel et al. CAV 2020]

– SYMLIVE [Symbolic liveness analysis of real-world software. Schemmel et 

al. CAV 2018]

4



The Need for Deterministic Memory Allocation

• For experiments to be repeatable, memory allocation must be repeatable

• Advanced symbolic execution techniques benefit from or outright require 

deterministic execution

– POR-SE [Symbolic partial-order execution for testing multi-threaded 

programs. Schemmel et al. CAV 2020]

– SYMLIVE [Symbolic liveness analysis of real-world software. Schemmel et 

al. CAV 2018]

– MOKLEE [Running symbolic execution forever. Busse et al. ISSTA 2020]

4



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

5



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

5



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

1. Support for external calls (addresses valid in host process)

5



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

1. Support for external calls (addresses valid in host process)

2. Cross-run determinism (multiple runs should behave the same)

5



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

1. Support for external calls (addresses valid in host process)

2. Cross-run determinism (multiple runs should behave the same)

3. Cross-path determinism (multiple paths should behave the same)

5



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

1. Support for external calls (addresses valid in host process)

2. Cross-run determinism (multiple runs should behave the same)

3. Cross-path determinism (multiple paths should behave the same)

4. Spatially distanced allocations (misindexing an array should trap)

5



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

1. Support for external calls (addresses valid in host process)

2. Cross-run determinism (multiple runs should behave the same)

3. Cross-path determinism (multiple paths should behave the same)

4. Spatially distanced allocations (misindexing an array should trap)

5. Temporally distanced allocations (use-after-free should trap)

5



KDALLOC

• An allocator specifically for dynamic symbolic execution can do better!

• Important properties:

1. Support for external calls (addresses valid in host process)

2. Cross-run determinism (multiple runs should behave the same)

3. Cross-path determinism (multiple paths should behave the same)

4. Spatially distanced allocations (misindexing an array should trap)

5. Temporally distanced allocations (use-after-free should trap)

6. Stability (minor changes should not snowball)

5



General Architecture

• mmap one large region and attach forkable metadata to the initial state

6



General Architecture

• mmap one large region and attach forkable metadata to the initial state

– This region is only used to provide addresses and for external calls

6



General Architecture

• mmap one large region and attach forkable metadata to the initial state

– This region is only used to provide addresses and for external calls

– Object data is already state-dependent

6



General Architecture

• mmap one large region and attach forkable metadata to the initial state

– This region is only used to provide addresses and for external calls

– Object data is already state-dependent

• Categorize allocations to reduce snowball effect

6



General Architecture

• mmap one large region and attach forkable metadata to the initial state

– This region is only used to provide addresses and for external calls

– Object data is already state-dependent

• Categorize allocations to reduce snowball effect

– Multiple allocators, especially to disconnect stack and heap

6



General Architecture

• mmap one large region and attach forkable metadata to the initial state

– This region is only used to provide addresses and for external calls

– Object data is already state-dependent

• Categorize allocations to reduce snowball effect

– Multiple allocators, especially to disconnect stack and heap

– Binned allocations

6



Memory Layout for KDALLOC

7



Slot Allocator for Sized Bins: Spatially Distanced

8



Slot Allocator for Sized Bins: Spatially Distanced

8



Slot Allocator for Sized Bins: Spatially Distanced

8



Memory Consumption

DFS RNDCOV

9



Performance

DFS RNDCOV

10



Solver Time

DFS RNDCOV

11



MOKLEE: Fewer Diverging Locations

12



char* s = (char*)dest;

const char* p = (const char*)src;

if (p >= s) {

while (n) {

*s++ = *p++;

--n;

}

MOKLEE: Fewer Divergences in memmove

} else {

while (n) {

--n;

s[n] = p[n];

}

}

return dest;

13



char* s = (char*)dest;

const char* p = (const char*)src;

if (p >= s) {

while (n) {

*s++ = *p++;

--n;

}

MOKLEE: Fewer Divergences in memmove

} else {

while (n) {

--n;

s[n] = p[n];

}

}

return dest;

13



char* s = (char*)dest;

const char* p = (const char*)src;

if (p >= s) {

while (n) {

*s++ = *p++;

--n;

}

MOKLEE: Fewer Divergences in memmove

} else {

while (n) {

--n;

s[n] = p[n];

}

}

return dest;

• uClibc’s memmove is sensitive to memory layout

13



Summary & Conclusion

14



Summary & Conclusion

• The memory allocator has significant impact on dynamic symbolic execution

14



Summary & Conclusion

• The memory allocator has significant impact on dynamic symbolic execution

• We implemented KDALLOC in KLEE and show:

14



Summary & Conclusion

• The memory allocator has significant impact on dynamic symbolic execution

• We implemented KDALLOC in KLEE and show:

– Performance and memory consumption are not impacted negatively

14



Summary & Conclusion

• The memory allocator has significant impact on dynamic symbolic execution

• We implemented KDALLOC in KLEE and show:

– Performance and memory consumption are not impacted negatively

– Use-after-free detection is improved (general benefit)

14



Summary & Conclusion

• The memory allocator has significant impact on dynamic symbolic execution

• We implemented KDALLOC in KLEE and show:

– Performance and memory consumption are not impacted negatively

– Use-after-free detection is improved (general benefit)

– Specific benefits for multiple DSE-based techniques

14



Summary & Conclusion

• The memory allocator has significant impact on dynamic symbolic execution

• We implemented KDALLOC in KLEE and show:

– Performance and memory consumption are not impacted negatively

– Use-after-free detection is improved (general benefit)

– Specific benefits for multiple DSE-based techniques

• KDALLOC is becoming part of mainline KLEE!

14



char *mallocfree() {

char *s = strdup("A");

free(s);

char *t = strdup("B");

return s;

}

Guaranteed Use-After-Free Behavior

int main(void) {

char *s = mallocfree();

puts(s);

return 0;

}

• KDALLOC guarantees detection when quarantine is enabled

15



Query Structure with KDAlloc

16



Query Structure without KDAlloc

17


