
How to Win SV-COMP with Symbolic Execution

Jan Strejček
Masaryk University

Brno, Czech Republic

KLEE Workshop 2022

SV-COMP

SV-COMP = Competition on Software Verification

organized by Dirk Beyer since 2012

task = to decide whether a given C (or Java) program
satisfies a given property (and produce a witness)

considered properties

reachability safety
memory safety
no overflows
termination

resources: 8 cores, 900 s of CPU time, 15 GB of memory

SV-COMP 2022

15 648 verification tasks

40 verification tools (including 12 hours concours)

12 of them use symbolic execution

2/25

SV-COMP

SV-COMP = Competition on Software Verification

organized by Dirk Beyer since 2012

task = to decide whether a given C (or Java) program
satisfies a given property (and produce a witness)

considered properties

reachability safety
memory safety
no overflows
termination

resources: 8 cores, 900 s of CPU time, 15 GB of memory

SV-COMP 2022

15 648 verification tasks

40 verification tools (including 12 hours concours)

12 of them use symbolic execution

2/25

Symbiotic at SV-COMP

participating since 2013 (every year except 2015)
4 gold medals in MemSafety (2018, 2019, 2021, 2022)
3 gold medals in SoftwareSystems (2020, 2021, 2022)
overall winner of SV-COMP 2022

source: https://sv-comp.sosy-lab.org/2022/results/results-verified/

3/25

https://sv-comp.sosy-lab.org/2022/results/results-verified/

Symbiotic at SV-COMP

participating since 2013 (every year except 2015)
4 gold medals in MemSafety (2018, 2019, 2021, 2022)
3 gold medals in SoftwareSystems (2020, 2021, 2022)
overall winner of SV-COMP 2022

source: https://sv-comp.sosy-lab.org/2022/results/results-verified/ 3/25

https://sv-comp.sosy-lab.org/2022/results/results-verified/

why Symbiotic uses symbolic execution

Jǐŕı Slabý Marek Trt́ık

Marek Chalupa

pros

+ no false alarms

+ Klee is available

+ Klee easily finds bugs

cons

− path explosion problem

− struggles with program loops

− rarely finishes on real programs

− Klee skips some runs

4/25

why Symbiotic uses symbolic execution

Jǐŕı Slabý Marek Trt́ık

Marek Chalupa

pros

+ no false alarms

+ Klee is available

+ Klee easily finds bugs

cons

− path explosion problem

− struggles with program loops

− rarely finishes on real programs

− Klee skips some runs

4/25

why Symbiotic uses symbolic execution

Jǐŕı Slabý Marek Trt́ık

Marek Chalupa

pros

+ no false alarms

+ Klee is available

+ Klee easily finds bugs

cons

− path explosion problem

− struggles with program loops

− rarely finishes on real programs

− Klee skips some runs

4/25

why Symbiotic uses symbolic execution

Jǐŕı Slabý Marek Trt́ık Marek Chalupa

pros

+ no false alarms

+ Klee is available

+ Klee easily finds bugs

cons

− path explosion problem

− struggles with program loops

− rarely finishes on real programs

− Klee skips some runs

4/25

outline

1 how Symbiotic works

Chalupa and Strejček: Symbiotic: Slice and Verify.
Under review.
Chalupa, Mihalkovič, Řechtáčková, Zaoral, and Strejček:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

2 what Slowbeast does

backward symbolic execution (BSE) = k-induction
BSE + loop folding (BSELF)
Chalupa and Strejček: Backward Symbolic Execution
with Loop Folding. SAS 2021.

5/25

outline

1 how Symbiotic works

Chalupa and Strejček: Symbiotic: Slice and Verify.
Under review.
Chalupa, Mihalkovič, Řechtáčková, Zaoral, and Strejček:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

2 what Slowbeast does

backward symbolic execution (BSE) = k-induction
BSE + loop folding (BSELF)
Chalupa and Strejček: Backward Symbolic Execution
with Loop Folding. SAS 2021.

5/25

outline

1 how Symbiotic works

Chalupa and Strejček: Symbiotic: Slice and Verify.
Under review.
Chalupa, Mihalkovič, Řechtáčková, Zaoral, and Strejček:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

2 what Slowbeast does

backward symbolic execution (BSE) = k-induction
BSE + loop folding (BSELF)
Chalupa and Strejček: Backward Symbolic Execution
with Loop Folding. SAS 2021.

5/25

JetKlee and Slowbeast

JetKlee

our fork of Klee optimized for verification
analysis of all possible runs is more important than speed
https://github.com/staticafi/JetKlee

Slowbeast

symbolic executor implemented by Marek Chalupa in Python
https://gitlab.fi.muni.cz/xchalup4/slowbeast

Klee JetKlee

Slowbeast

symbolic pointers 3 3

3

symbolic-sized allocations 7 3

3

symbolic addresses 7 3

3
symbolic floats 7 7 3
parallel programs 7 7 3
backward symbolic exec. (BSE) 7 7 3
BSE + loop folding (BSELF) 7 7 3
invariant generation 7 7 3

6/25

https://github.com/staticafi/JetKlee
https://gitlab.fi.muni.cz/xchalup4/slowbeast

JetKlee and Slowbeast

JetKlee

our fork of Klee optimized for verification
analysis of all possible runs is more important than speed
https://github.com/staticafi/JetKlee

Slowbeast

symbolic executor implemented by Marek Chalupa in Python
https://gitlab.fi.muni.cz/xchalup4/slowbeast

Klee JetKlee Slowbeast
symbolic pointers 3 3 3
symbolic-sized allocations 7 3 3
symbolic addresses 7 3 3
symbolic floats 7 7 3
parallel programs 7 7 3
backward symbolic exec. (BSE) 7 7 3
BSE + loop folding (BSELF) 7 7 3
invariant generation 7 7 3

6/25

https://github.com/staticafi/JetKlee
https://gitlab.fi.muni.cz/xchalup4/slowbeast

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

7/25

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

7/25

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

7/25

first workflow of Symbiotic for reachability safety

C program

LLVM

program slicing

Klee

3/7/unk

8/25

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

standard control
dependence (SCD)

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

non-termination
sensitive control

dependence (NTSCD)

9/25

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

standard control
dependence (SCD)

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

non-termination
sensitive control

dependence (NTSCD)

9/25

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

standard control
dependence (SCD)

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

non-termination
sensitive control

dependence (NTSCD)

9/25

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

standard control
dependence (SCD)

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

non-termination
sensitive control

dependence (NTSCD)

9/25

program slicing

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

standard control
dependence (SCD)

n = input();

i = 0;

while (i != n) {
c = input();

if (i == 0) {
min = c;

max = c;

}
if (c < min)

min = c;

if (c > max)

max = c;

i = i + 2;

}
assert(min <= c);

assert(even(n));

non-termination
sensitive control

dependence (NTSCD)

9/25

influence of slicing on performance of Klee

correct verification results produced by Klee with slicing
on reachability safety tasks of SV-COMP 2019

slicing (SCD) also brought 43 incorrect verification results 7

Chalupa and Strejček: Evaluation of Program Slicing in
Software Verfication. iFM 2019.

10/25

influence of slicing on performance of Klee

correct verification results produced by Klee with slicing
on reachability safety tasks of SV-COMP 2019

slicing (SCD) also brought 43 incorrect verification results 7

Chalupa and Strejček: Evaluation of Program Slicing in
Software Verfication. iFM 2019.

10/25

current workflow of Symbiotic for reachability safety

C program

LLVM

program slicing (SCD)

JetKlee

Slowbeast (BSELF)

Slowbeast (SE)

3/unk

replay violation
on unsliced code

7 unk

timeout 222 s
fails on

threads or
symbolic floats

fail

11/25

current workflow of Symbiotic for other properties

inserts assertions that
check potential overflows

C program

LLVM

instrumentation static analyses

program slicing (SCD)

JetKlee 3/unk

replay violation
on unsliced code

7

unk

memory safety

marks code that
may be memory-unsafe

12/25

current workflow of Symbiotic for other properties

inserts assertions that
check potential overflows

C program

LLVM

instrumentation static analyses

program slicing (SCD)

JetKlee 3/unk

replay violation
on unsliced code

7

unk

no overflows

inserts assertions that
check potential overflows

12/25

current workflow of Symbiotic for other properties

inserts assertions that
check potential overflows

C program

LLVM

instrumentation static analyses

program slicing (NTSCD)

JetKlee

3/7/unk

unk

termination

reduces non-termination
of some loops
to assertion violation

12/25

general structure of Symbiotic

C program and property

3/7/unk

LLVM

instrumentation
static

analyses

program slicing

Clang

predator

DG library

verification JetKlee

Slowbeast

CPAchecker
...

Symbiotic

symbiotic-cc

symbiotic-verifier

13/25

general structure of Symbiotic

C program and property

3/7/unk

LLVM

instrumentation
static

analyses

program slicing

Clang

predator

DG library

verification JetKlee

Slowbeast

CPAchecker
...

Symbiotic

symbiotic-cc

symbiotic-verifier SV-COMP

13/25

outline

1 how Symbiotic works

Chalupa and Strejček: Symbiotic: Slice and Verify.
Under review.
Chalupa, Mihalkovič, Řechtáčková, Zaoral, and Strejček:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

2 what Slowbeast does

backward symbolic execution (BSE) = k-induction
BSE + loop folding (BSELF)
Chalupa and Strejček: Backward Symbolic Execution
with Loop Folding. SAS 2021.

14/25

control flow automata (CFA)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err has no successors

a path is feasible if it can be entirely executed

a path is unsafe if it is feasible and ends in err ,
it is safe otherwise

a CFA is correct if all paths starting in init are safe,
it is incorrect otherwise

15/25

control flow automata (CFA)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err has no successors

a path is feasible if it can be entirely executed

a path is unsafe if it is feasible and ends in err ,
it is safe otherwise

a CFA is correct if all paths starting in init are safe,
it is incorrect otherwise

15/25

control flow automata (CFA)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err has no successors

a path is feasible if it can be entirely executed

a path is unsafe if it is feasible and ends in err ,
it is safe otherwise

a CFA is correct if all paths starting in init are safe,
it is incorrect otherwise

15/25

control flow automata (CFA)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err has no successors

a path is feasible if it can be entirely executed

a path is unsafe if it is feasible and ends in err ,
it is safe otherwise

a CFA is correct if all paths starting in init are safe,
it is incorrect otherwise

15/25

symbolic execution (SE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

init | true

1 | true

4 | 0 ≥ n

2 | 0 < n

3 | 0 < n

err | false

1 | 1 < n

4 | 1 = n

...

x = 0; i = 0

[i ≥ n]

[i < n]

x = x+1; i = i+1

[x 6= i]

[x = i]

[i < n]

[i ≥ n]

16/25

symbolic execution (SE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

init | true

1 | true

4 | 0 ≥ n

2 | 0 < n

3 | 0 < n

err | false

1 | 1 < n

4 | 1 = n

...

x = 0; i = 0

[i ≥ n]

[i < n]

x = x+1; i = i+1

[x 6= i]

[x = i]

[i < n]

[i ≥ n]

16/25

backward symbolic execution (BSE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err | true

3 | x 6= i

[x 6= i]

2 | x 6= i

x = x+1; i = i+1

1 | x 6= i ∧ i < n

[i < n]

init | false

x = 0;
i = 0

3 | false

[x = i]

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err | true

3 | x 6= i

[x 6= i]

2 | x 6= i

x = x+1; i = i+1

1 | x 6= i ∧ i < n

[i < n]

init | false

x = 0;
i = 0

3 | false

[x = i]

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err | true

3 | x 6= i

[x 6= i]

2 | x 6= i

x = x+1; i = i+1

1 | x 6= i ∧ i < n

[i < n]

init | false

x = 0;
i = 0

3 | false

[x = i]

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err | true

3 | x 6= i

[x 6= i]

2 | x 6= i

x = x+1; i = i+1

1 | x 6= i ∧ i < n

[i < n]

init | false

x = 0;
i = 0

3 | false

[x = i]

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err | true

3 | x 6= i

[x 6= i]

2 | x 6= i

x = x+1; i = i+1

1 | x 6= i ∧ i < n

[i < n]

init | false

x = 0;
i = 0

3 | false

[x = i]

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err | true

3 | x 6= i

[x 6= i]

2 | x 6= i

x = x+1; i = i+1

1 | x 6= i ∧ i < n

[i < n]

init | false

x = 0;
i = 0

3 | false

[x = i]

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

err | true

3 | x 6= i

[x 6= i]

2 | x 6= i

x = x+1; i = i+1

1 | x 6= i ∧ i < n

[i < n]

init | false

x = 0;
i = 0

3 | false

[x = i]

17/25

k-induction for CFA

k-induction for CFA

A CFA is correct if the following holds for some k > 0.

1 base case
All paths of length at most k starting in init are safe.

2 induction step
Each path of length k + 1 that has a safe prefix of length k is
also safe.

verification algorithm

1 k ← 1

2 if base case does not hold then return incorrect

3 if induction step holds then return correct

4 k ← k + 1

5 goto 2

18/25

k-induction for CFA

k-induction for CFA

A CFA is correct if the following holds for some k > 0.

1 base case
All paths of length at most k starting in init are safe.

2 induction step
Each path of length k + 1 that has a safe prefix of length k is
also safe.

verification algorithm

1 k ← 1

2 if base case does not hold then return incorrect

3 if induction step holds then return correct

4 k ← k + 1

5 goto 2

18/25

relating k-induction and BSE

base case

All paths of length at most k starting in init are safe.

i.e. there is no feasible path from init to err of length at most k

we can either search all relevant paths starting in init

or search all relevant paths leading to err

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

init 1

2 3

4

err

1

err321

3

init

19/25

relating k-induction and BSE

base case

All paths of length at most k starting in init are safe.

i.e. there is no feasible path from init to err of length at most k

we can either search all relevant paths starting in init

or search all relevant paths leading to err

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

init 1

2 3

4

err

1

err321

3

init

19/25

relating k-induction and BSE

base case

All paths of length at most k starting in init are safe.

i.e. there is no feasible path from init to err of length at most k

we can either search all relevant paths starting in init

or search all relevant paths leading to err

init 1 2 3

4 err

x = 0;
i = 0; [i < n]

[i ≥ n]

x = x+1;
i = i+1

[x = i]
[x 6= i]

init 1

2 3

4

err

1

err321

3

init

19/25

relating k-induction and BSE

induction step

Each path of length k + 1 that has a safe prefix of length k is also
safe.

i.e. there is no unsafe path of length k + 1 with a safe prefix
of length k

but a proper prefix of each unsafe path is safe

i.e. there is no feasible path to err of length k + 1

i.e. the BSE tree is finite

20/25

relating k-induction and BSE

Theorem (BSE = k-induction)

If a CFA is incorrect, then the k-induction algorithm detects it and
BSE tree will contain an unsafe path from init.
If a CFA is correct, then k-induction algorithm detects it if and
only if the BFS tree is finite and contains no init node.

Both approaches fail to detect correctness of a CFA that contains
an unsafe path of length k for each k > 0 (i.e. BSE tree is infinite).

21/25

BSE with Loop Folding (BSELF)

BSE (and k-induction) is incomplete

invariants in loops can help

loop folding computes loop invariants
from BSE states

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}

assert(x == i);

22/25

BSE with Loop Folding (BSELF)

BSE (and k-induction) is incomplete

invariants in loops can help

loop folding computes loop invariants
from BSE states

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}
assert(x == i);

22/25

BSE with Loop Folding (BSELF)

BSE (and k-induction) is incomplete

invariants in loops can help

loop folding computes loop invariants
from BSE states

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}
assert(x == i);

22/25

BSE with Loop Folding (BSELF)

BSE (and k-induction) is incomplete

invariants in loops can help

loop folding computes loop invariants
from BSE states

int n; // input

int x = 0;

int i = 0;

while (i < n) {
++x;

++i;

assert(x == i);

}
assert(x == i);

22/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ h | ρ

invariant for h

3
h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ

h | ρ

invariant for h

3
h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ h | ρ

invariant for h

3

h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

when BSE reaches a node h | φ where h is a loop header,
we try to find an invariant ρ for h satisfying ρ =⇒ ¬φ
if we succeed, we can drop this path

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ

h | ρ

invariant for h

3
h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

we gradually create invarant candidates

each candidate ξ satisfies ξ =⇒ ¬φ and is inductive, i.e.

if h | ξ · · · h | ξ′ then ξ′ =⇒ ξ

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ

h | ρ

invariant for h

3

h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

we gradually create invarant candidates

each candidate ξ satisfies ξ =⇒ ¬φ and is inductive, i.e.

if h | ξ · · · h | ξ′ then ξ′ =⇒ ξ

1 find first invariant candidate ξ such that location h cannot be
reached again from h | ξ

2 if ξ is not an invariant, then compute ψ1, ψ2

3 if ψi =⇒ ¬φ, then ψi ∨ ξ is also a candidate

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ

h | ρ

invariant for h

3

h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

we gradually create invarant candidates

each candidate ξ satisfies ξ =⇒ ¬φ and is inductive, i.e.

if h | ξ · · · h | ξ′ then ξ′ =⇒ ξ

1 find first invariant candidate ξ such that location h cannot be
reached again from h | ξ

2 if ξ is not an invariant, then compute ψ1, ψ2

3 if ψi =⇒ ¬φ, then ψi ∨ ξ is also a candidate

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ

h | ρ

invariant for h

3

h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

we gradually create invarant candidates

each candidate ξ satisfies ξ =⇒ ¬φ and is inductive, i.e.

if h | ξ · · · h | ξ′ then ξ′ =⇒ ξ

1 find first invariant candidate ξ such that location h cannot be
reached again from h | ξ

2 if ξ is not an invariant, then compute ψ1, ψ2

3 if ψi =⇒ ¬φ, then ψi ∨ ξ is also a candidate
...

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ

h | ρ

invariant for h

3

h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

...

candidates ψ11 ∨ ψ1 ∨ ξ and ψ12 ∨ ψ1 ∨ ξ
...

23/25

BSE with Loop Folding (BSELF)

init · · · h · · · err

π1

π2

err | true

...

h | φ

h | ρ

invariant for h

3

h | ξ

first candidate

h | ψ1 h | ψ2

π1 π2

h | ψ11 h | ψ12

π1 π2

we also apply overapproximation to candidates

searching for an invariant is restricted to not get stuck

if invariant is not found, we continue with BSE

but candidates are saved and used for the construction of the
first candidate when we enter h next time

23/25

BSE vs. BSELF

BSE vs. BSELF on reachability safety tasks
from the Loops subcategory of SV-COMP 2021

(only benchmarks solved by BSE or BSELF)

0 100 101 102 103

BSELF CPU time [s]

0

100

101

102

103
BS

E
CP

U
tim

e
[s

]

24/25

conclusion

to win SV-COMP with symbolic execution

first use static analyses and slicing to reduce the program
tune symbolic executor to handle various code features precisely
combine SE with BSE and potentialy other techniques
fix all bugs

Thank you.

25/25

conclusion

to win SV-COMP with symbolic execution

first use static analyses and slicing to reduce the program
tune symbolic executor to handle various code features precisely
combine SE with BSE and potentialy other techniques
fix all bugs

Thank you.

25/25

