How to Win SV-COMP with Symbolic Execution

Jan Strejéek
Masaryk University
Brno, Czech Republic

KLEE Workshop 2022

SV-COMP

SV-COMP = Competition on Software Verification
m organized by Dirk Beyer since 2012
m task = to decide whether a given C (or Java) program
satisfies a given property (and produce a witness)
m considered properties

m reachability safety
m memory safety

m no overflows

m termination

m resources: 8 cores, 900 s of CPU time, 15 GB of memory

2/25

SV-COMP

SV-COMP = Competition on Software Verification
m organized by Dirk Beyer since 2012

m task = to decide whether a given C (or Java) program
satisfies a given property (and produce a witness)
m considered properties

m reachability safety
m memory safety

m no overflows

m termination

m resources: 8 cores, 900 s of CPU time, 15 GB of memory

SV-COMP 2022
m 15648 verification tasks
m 40 verification tools (including 12 hours concours)

m 12 of them use symbolic execution

2/25

SyMBIOTIC at SV-COMP

m participating since 2013 (every year except 2015)

m 4 gold medals in MemSafety (2018, 2019, 2021, 2022)
m 3 gold medals in SoftwareSystems (2020, 2021, 2022)
m overall winner of SV-COMP 2022

3/25

https://sv-comp.sosy-lab.org/2022/results/results-verified/

SyMBIOTIC at SV-COMP

m participating since 2013 (every year except 2015)

m 4 gold medals in MemSafety (2018, 2019, 2021, 2022)
m 3 gold medals in SoftwareSystems (2020, 2021, 2022)
m overall winner of SV-COMP 2022

1000

as
CBMC —¢—
CVT-ParPort —&—
GPAchecker-2-1 ==
DIVINE =
ESBMC-kind =&

100

L I . SR OO L 1 L 1

6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000

Cumulative score

source: https://sv-comp.sosy-lab.org/2022/results/results-verified/ 3/25

https://sv-comp.sosy-lab.org/2022/results/results-verified/

why SYMBIOTIC uses symbolic execution

‘ '7,'AJ;'
(el

>

Ji¥i Slaby Marek Trtik

4/25

why SYMBIOTIC uses symbolic execution

Ji¥i Slaby Marek Trtik

pros
+ no false alarms
+ KLEE is available
+ KLEE easily finds bugs

4/25

why SYMBIOTIC uses symbolic execution

.
3

A

Ji¥i Slaby Marek Trtik

pros cons
+ no false alarms — path explosion problem
+ KLEE is available — struggles with program loops
+ KLEE easily finds bugs — rarely finishes on real programs

— KLEE skips some runs

4/25

why SYMBIOTIC uses symbolic execution

Ji¥l Slaby

pros cons
+ no false alarms — path explosion problem
+ KLEE is available — struggles with program loops
+ KLEE easily finds bugs — rarely finishes on real programs

— KLEE skips some runs

4/25

outline

how SYMBIOTIC works
m Chalupa and Strej¢ek: Symbiotic: Slice and Verify.
Under review.
m Chalupa, Mihalkovi¢, Rechtatkova, Zaoral, and Strejéek:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

5/25

outline

how SYMBIOTIC works
m Chalupa and Strej¢ek: Symbiotic: Slice and Verify.
Under review.
m Chalupa, Mihalkovi¢, Rechtatkova, Zaoral, and Strejéek:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

what SLOWBEAST does

m backward symbolic execution (BSE) = k-induction

m BSE + loop folding (BSELF)

m Chalupa and Strej¢ek: Backward Symbolic Execution
with Loop Folding. SAS 2021.

5/25

outline

how SYMBIOTIC works
m Chalupa and Strej¢ek: Symbiotic: Slice and Verify.
Under review.
m Chalupa, Mihalkovi¢, Rechtatkova, Zaoral, and Strejéek:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

what SLOWBEAST does

m backward symbolic execution (BSE) = k-induction

m BSE + loop folding (BSELF)

m Chalupa and Strej¢ek: Backward Symbolic Execution
with Loop Folding. SAS 2021.

5/25

JETKLEE and SLOWBEAST

JETKLEE
m our fork of KLEE optimized for verification
m analysis of all possible runs is more important than speed
m https://github.com/staticafi/JetKlee

KLEE JETKLEE
symbolic pointers v v
symbolic-sized allocations X v
symbolic addresses X v

6/25

https://github.com/staticafi/JetKlee
https://gitlab.fi.muni.cz/xchalup4/slowbeast

JETKLEE and SLOWBEAST

JETKLEE
m our fork of KLEE optimized for verification
m analysis of all possible runs is more important than speed
m https://github.com/staticafi/JetKlee

SLOWBEAST
m symbolic executor implemented by Marek Chalupa in Python
m https://gitlab.fi.muni.cz/xchalup4/slowbeast

KLEE JETKLEE SLOWBEAST

symbolic pointers

symbolic-sized allocations

symbolic addresses

symbolic floats

parallel programs

backward symbolic exec. (BSE)

BSE + loop folding (BSELF)

invariant generation

> X X X X X X% \ K
x X X X XN\

SSSN SN

6/25

https://github.com/staticafi/JetKlee
https://gitlab.fi.muni.cz/xchalup4/slowbeast

program slicing

n = input();
i=0;
while (i '= n) {
¢ = input(Q);
if (i == 0) {
min = c;
max = c;
}

if (¢ < min)

min = c;
if (c > max)
max = c;

assert(min <= c);
assert(even(n));

7/25

program slicing

n = input();
i=0;
while (i '= n) {
¢ = input(Q);
if (i == 0) {
min = c;
max = c;
}

if (c < min)

min = c;
if (¢ > max)
max = c;

assert(min <= c);
assert(even(n));

7/25

program slicing

n = input();
i=0;
while (i '= n) {
¢ = input(Q);
if (1 ==0) {
min = c;
max = c;
}

if (¢ < min)

min = c;
if (c > max)
max = c;

assert(min <= c);
assert(even(n));

n = input();
i=0;
while (i '= n) {
¢ = input(Q);
if (i ==0) {
min = c;

if (¢ < min)
min = c;

assert(min <= c¢);

7/25

first workflow of SYMBIOTIC for reachability safety

C program

[program incingJ

v /X/unk

8/25

program slicing

n = input();
i=0;
while (i !=n) {
c = input(Q);
if (1 ==0) {
min = c;
max = c;
}
if (c < min)
min = c;
if (c > max)
max = c;
i=1i+ 2;

}

assert(min <= c¢);
assert(even(n));

9/25

program slicing

n = input();
i=0;
while (i !=n) {
c = input(Q);
if (1 ==0) {
min = c;
max = c;
}
if (¢ < min)
min = c;
if (¢ > max)
max = c;
i=1i+ 2;

}

assert(min <= c);
assert(even(n));

9/25

program slicing

n = input(); n = input();
i= 0;
while (i != n) {
c = input(Q);
if (i ==0) {
min = c;
max = c;
}
if (¢ < min)
min = c;
if (¢ > max)
max = c;
i=1i+ 2;

}

assert(min <= c¢);
assert(even(n)); assert(even(n));

9/25

program slicing

n = input(); n = input(); n = input();
i= 0; i=0;
while (i != n) { while (i !=n) {
c = input(Q);
if (1 ==0) {
min = c;
max = c;
}
if (¢ < min)
min = c;
if (¢ > max)
max = c;
i=1i+ 2; i=1i+ 2;
} }
assert(min <= c);
assert(even(n)); assert(even(n)); assert(even(n));

9/25

program slicing

n = input();
i=0;
while (i !=n) {
c = input(Q);
if (1 ==0) {
min = c;
max = c;
}
if (c < min)
min = c;
if (c > max)
max = c;
i=1i+ 2;

assert(min <= c);
assert(even(n));

n = input();

assert(even(n));

standard control
dependence (SCD)

n = input();
i=0;
while (i !=n) {

i=1i+ 2;
}
assert(even(n));

non-termination
sensitive control
dependence (NTSCD)

9/25

influence of slicing on performance of KLEE

correct verification results produced by KLEE with slicing
on reachability safety tasks of SV-COMP 2019

1000
—— No slicing

800 — Slicing (SCD)
- Slicing (NTSCD)
o 600
£
S 400
a
o

200

0
0 500 1000 1500 2000 2500 3000

n-th fastest benchmark

10/25

influence of slicing on performance of KLEE

CPU time [s]

correct verification results produced by KLEE with slicing
on reachability safety tasks of SV-COMP 2019

1000
—— No slicing
800{ — Slicing (SCD)
Slicing (NTSCD)

600
400
200

0

0 500 1000 1500 2000 2500 3000

n-th fastest benchmark

m slicing (SCD) also brought 43 incorrect verification results X

m Chalupa and Strejéek: Evaluation of Program Slicing in
Software Verfication. iFM 2019.

10/25

current workflow of SYMBIOTIC for reachability safety

C program

[program slicing (SCD)]

timeout 222 s

fails on
threads or [SLOWBEAST (BSELF)
symbolic floats

replay violation
on unsliced code

11/25

current workflow of SYMBIOTIC for other properties

memory safety

ki de that R . .
ark code 9t e (istrumentation J—{static anayses)
¥

{program slicing (SCD)]

JETKLEE ——> v/ /unk
X
replay violation
on unsliced code
k

un

12/25

current workflow of SYMBIOTIC for other properties

no overflows

inserts assertions that . . [.
check potential overflows ('nStrumentatlonJ static analysesJ

{program slicing (SCD)]

JETKLEE ——> v/ /unk
X
replay violation
on unsliced code
k

un

12/25

current workflow of SYMBIOTIC for other properties

termination C program

reduces non-termination -
of some loops (instrumentation}—{s’tatlc analyseSJ

to assertion violation

[program slicing (NTSCD)]

v /X/unk

12/25

general structure of SYMBIOTIC

(C program and propertyJ

SYMBIOTIC

LL\m CLANG

analyses
DG library

instrumentation

v
[program incing}

symbiotic-cc
symbiotic-verifier

verification JETKLEE

CPACHECKER]

v /X/unk

13/25

general structure of SYMBIOTIC

(C program and propertyJ

SYMBIOTIC

LL\m CLANG

analyses
DG library

instrumentation

v
[program incing}

symbiotic-cc
symbiotic-verifier SV-COMP

verification JETKLEE

CPACHECKER]

v /X /unk

13/25

outline

how SYMBIOTIC works
m Chalupa and Strej¢ek: Symbiotic: Slice and Verify.
Under review.
m Chalupa, Mihalkovi¢, Rechtatkova, Zaoral, and Strejéek:
Symbiotic 9: String Analysis and Backward Symbolic
Execution with Loop Folding. TACAS 2022.

what SLOWBEAST does

m backward symbolic execution (BSE) = k-induction

m BSE + loop folding (BSELF)

m Chalupa and Strej¢ek: Backward Symbolic Execution
with Loop Folding. SAS 2021.

14/25

control flow automata (CFA)

int n; // input x =0; x = x+1;
int x = 0; @'—0 /\['<"]m/_:+1
int i = 0; _//

= [x # 1

while (i < n) {
++X;
++1i;

assert(x == i);

}

15/25

control flow automata (CFA)

int n; // input x=0; . x = x+1;
int x = 0; @I:O,®/<n®,:,+1
int i = 0; 2/

while (i < n) { [i = n]
++X;
i

’

assert(x == 1i);

}

m err has no successors

m a path is feasible if it can be entirely executed

15/25

control flow automata (CFA)

int n; // input >_<:0.; . x = x+1;
int x = 0; @I:O,®/<n®,:,+1
int i = 0; 2/

while (i < n) { [i = n]
++X;
++1i;

assert(x == 1i);

}

m err has no successors
m a path is feasible if it can be entirely executed

m a path is unsafe if it is feasible and ends in err,
it is safe otherwise

15/25

control flow automata (CFA)

int n; // input >_<:0.; . x = x+1;
int x = 0; @I:O,®/<n®,:,+1
int i = 0; 2/

while (i < n) { [i = n]
++X;
++1i;

assert(x == 1i);

}

m err has no successors
m a path is feasible if it can be entirely executed

m a path is unsafe if it is feasible and ends in err,
it is safe otherwise

m a CFA is correct if all paths starting in init are safe,
it is incorrect otherwise

15/25

symbolic execution (SE)

int n; // input

int x = 0;
int i = 0;
while (i < mn) {
++x;
++1i;
assert(x == i);
}

16/25

symbolic execution (SE)

init | true
int n; // input

int x = 0; x=0;i=0

int i = 0;
’ 1| true P>
while (i < mn) { |I [i = n]
i<

i
’ 2|0<
assert(x == i); | Zl
} x=x+1;i =i+l
310 < [x #1
[x = i] ‘err | false!

16/25

backward symbolic execution (BSE)

int n; // input

int x = 0;
int i = 0;
while (i < mn) {
++x;
++1i;
assert(x == i);
}

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;
int i = 0;
while (i < mn) {
++x;
++1i;
assert(x == i);
}

17/25

backward symbolic execution (BSE)

err | true
int n; // input
int x = 0; [x # 1]

in1.:i=‘0; 3|X§£l

while (i < mn) {
+4x;

++1;

>

assert(x == 1i);

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;
int i = 0;
while (i < mn) {
++x;
++1i;
assert(x == i);
}

err | true

[x #]

EEEZ

x=x+1;i =i+l

2| x#£i

17/25

backward symbolic execution (BSE)

int n; // input

int x = 0;
int i = 0;
while (i < mn) {
++x;
++1i;
assert(x == i);
}

err | true

[x #]

EEEZ

x=x+1;i =i+l

HEEZ

[i<n]

I[x#iAi<n

17/25

backward symbolic execution (BSE)

err | true

int n; // input

int x = 0; [x # 1]

in1? i =‘o; @E

while (i < mn) {
+4x; x=x+1;i=i+1

i -
’ 2
assert(x == i); EE'

17/25

backward symbolic execution (BSE)

err | true
int n; // input

int x = 0; [x # 1]

in1? i =‘o; @E

while (i < mn) {
+4x; x=x+1;i=i+1

i -
’ 2
assert(x == i); EE'

17/25

k-induction for CFA

k-induction for CFA

A CFA is correct if the following holds for some k > 0.

base case
All paths of length at most k starting in init are safe.

induction step
Each path of length k + 1 that has a safe prefix of length k is
also safe.

v

18/25

k-induction for CFA

k-induction for CFA

A CFA is correct if the following holds for some k > 0.

base case
All paths of length at most k starting in init are safe.

induction step
Each path of length k + 1 that has a safe prefix of length k is
also safe.

v

verification algorithm
k+1

if base case does not hold then return incorrect

if induction step holds then return correct
k+— k+1
goto 2

18/25

relating k-induction and BSE

base case
All paths of length at most k starting in init are safe.

m i.e. there is no feasible path from init to err of length at most k

19/25

relating k-induction and BSE

base case
All paths of length at most k starting in init are safe.

m i.e. there is no feasible path from init to err of length at most k

m we can either search all relevant paths starting in init

x=0; [] X = x+1;
— [:O’f-\ 1<n m/:/-l,-]_
@—0—@

19/25

relating k-induction and BSE

base case
All paths of length at most k starting in init are safe.

m i.e. there is no feasible path from init to err of length at most k

m we can either search all relevant paths starting in init
m or search all relevant paths leading to err

x=0; [] X = x+1;
— [:O’f-\ 1<n m/:/-l,-]_
@—0—@

19/25

relating k-induction and BSE

induction step

Each path of length k + 1 that has a safe prefix of length k is also
safe.

m i.e. there is no unsafe path of length k + 1 with a safe prefix
of length k

m but a proper prefix of each unsafe path is safe
m i.e. there is no feasible path to err of length k +1
m i.e. the BSE tree is finite

20/25

relating k-induction and BSE

Theorem (BSE = k-induction)

If a CFA is incorrect, then the k-induction algorithm detects it and
BSE tree will contain an unsafe path from init.

If a CFA is correct, then k-induction algorithm detects it if and
only if the BFS tree is finite and contains no init node.

Both approaches fail to detect correctness of a CFA that contains
an unsafe path of length k for each k > 0 (i.e. BSE tree is infinite).

21/25

BSE with Loop Folding (BSELF)

m BSE (and k-induction) is incomplete int n; // input
int x = 0;
int i = 0;
while (i < n) {
++Xx;
++1i;
assert(x == i);

}

22/25

BSE with Loop Folding (BSELF)

m BSE (and k-induction) is incomplete int n; // input
int x = 0;
int i = 0;
while (i < n) {
++Xx;
++1i;

}

assert(x == 1i);

22/25

BSE with Loop Folding (BSELF)

m BSE (and k-induction) is incomplete int n; // input
int x = 0;
int i = 0;
while (i < n) {
++X;
++1i;

}

assert(x == 1i);

m invariants in loops can help

22/25

BSE with Loop Folding (BSELF)

m BSE (and k-induction) is incomplete int n; // input
m invariants in loops can help int x = 0;
. . i int i = 0;
m loop folding computes loop invariants vhile (i < n) {
from BSE states +x;
++1i;
}
assert(x == i);

22/25

BSE with Loop Folding (BSELF)

23/25

BSE with Loop Folding (BSELF)

f T) err | true
. 7T2 J

hi ¢

23/25

BSE with Loop Folding (BSELF)

err | true

invariant for h

:
(5]

hl p |

m when BSE reaches a node where h is a loop header,

we try to find an invariant p for h satisfying p =— —¢

m if we succeed, we can drop this path

23/25

BSE with Loop Folding (BSELF)

f T) err | true
. 7T2 J

hi ¢

m we gradually create invarant candidates

m each candidate ¢ satisfies ¢ = —¢ and is inductive, i.e.

if [h] € |- —[h] &] then ¢ — ¢

23/25

BSE with Loop Folding (BSELF)

(1) err | true
4%_ : first candidate
(i)

;
[h] ¢ | [h] € |

m we gradually create invarant candidates

m each candidate ¢ satisfies ¢ = —¢ and is inductive, i.e.

if then & — ¢
find first invariant candidate £ such that location h cannot be

reached again from

23/25

BSE with Loop Folding (BSELF)

(1) err | true
: first candidate
i |
(i)

Al o | [Al €|

LYARNG

[A] ¢1 | [] ¥2 |

m we gradually create invarant candidates

m each candidate ¢ satisfies ¢ = —¢ and is inductive, i.e.
it (A€ = then ¢ — ¢

find first invariant candidate £ such that location h cannot be

reached again from

if £ is not an invariant, then compute 1, 1>

23/25

BSE with Loop Folding (BSELF)

(1) err | true
: first candidate
i |
T)

Al o | [Al €|

LYARNG

[A] ¢1 | [] ¥2 |

\.

m we gradually create invarant candidates
m each candidate ¢ satisfies ¢ = —¢ and is inductive, i.e.
f then & = ¢

find first invariant candidate £ such that location h cannot be

reached again from

if £ is not an invariant, then compute 1, 1>
if i = —¢, then 9; V £ is also a candidate

23/25

BSE with Loop Folding (BSELF)

(1) err | true
4%_ : first candidate
(i)

i
[h] ¢ | [h] € |
VAN
[A] ¢1] [A] ¥2 |
7r¥//” K\\zrz

Al ¢ | [h] ¢z |

m candidates Y11 V91 VE and Y12 VP VE

23/25

BSE with Loop Folding (BSELF)

(1 err | true
: first candidate
i |
[hl o] [n] €]
L 2)

LYARNG

[A] W1 | [h] 42]
VAN

Al ¢ | [h] ¢z |

m we also apply overapproximation to candidates
m searching for an invariant is restricted to not get stuck
m if invariant is not found, we continue with BSE

m but candidates are saved and used for the construction of the
first candidate when we enter h next time

23/25

BSE vs. BSELF

BSE vs. BSELF on reachability safety tasks
from the Loops subcategory of SV-COMP 2021
(only benchmarks solved by BSE or BSELF)

10° SORBCBOICMECKIH IBEIKIK KA XK I
X X
102
—_ X
A
£
= X
jm ST XX
10
8-) X X
w
u S
o K
X
>z< x ix X
2K
0 X
10 ¢ 3
0
0 100 10t 102 103

BSELF CPU time [s]

24/25

conclusion

to win SV-COMP with symbolic execution
m first use static analyses and slicing to reduce the program
m tune symbolic executor to handle various code features precisely
m combine SE with BSE and potentialy other techniques
m fix all bugs

25/25

conclusion

to win SV-COMP with symbolic execution
m first use static analyses and slicing to reduce the program
m tune symbolic executor to handle various code features precisely
m combine SE with BSE and potentialy other techniques
m fix all bugs

Thank you.

25/25

