
Symbolic Execution for RISC-V Embedded
Software Using SystemC Peripheral Models

Sören Tempel1, Vladimir Herdt1,2, Rolf Drechsler1,2

tempel@uni-bremen.de
1Group of Computer Architecture, University of Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

1/9

Motivation

Goal: Employing symbolic execution for testing embedded SW

Challenges:
▶ Heterogeneous software ecosystem
▶ Utilization of different peripherals
▶ Interaction with low-level machine details

Prior Work: Firmware rehosting, hybrid emulation, …
⇒ Alternative: Employ accurate peripheral models

2/9

Background: Peripheral Modelling

▶ Hardware can be modeled on different abstraction levels
▶ Examples: Register transfer level, transaction level, …
▶ Trade-off between accuracy and simulation performance

▶ Desired for symbolic execution: High simulation speed
▶ We utilize SystemC TLM for hardware modelling

▶ Modelling language based on C++
▶ Operates primarily on the transaction level
▶ Models peripherals based on a bus abstraction

Behavioral Structural

Physical

SystemC TLM

Circuit Level

Register Transfer Level

Transaction Level

System Level

Figure: Gajski-Kuhn Chart

3/9

Approach: Virtual Prototyping

Virtual Prototypes: Executable SW model of a HW platform
⇒ Including provided peripherals in SystemC TLM

▶ Our work is based on the open source riscv-vp
▶ Support different RISC-V based hardware platforms
▶ Provides an executable model for the SiFive HiFive1

GitHub: https://github.com/agra-uni-bremen/riscv-vp

4/9

https://github.com/agra-uni-bremen/riscv-vp

SymEx-VP: Symbolic Execution for Embedded Software

SymEx-VP: Symbolic execution meets VPs

▶ Integrates existing riscv-vp with KLEE
▶ Symbolically executes RISC-V machine code
▶ Provides TLM extension for symbolic values

⇒ SW is explored based on peripheral inputs

Figure: Architectural overview of SymEx-VP

5/9

Connection with KLEE

Focus: Addressing integration challenges in the embedded domain
⇒ Uses stripped-down version of KLEE without LLVM-specific code

▶ Presently offers a simple Concolic Testing implementation
▶ Offline executor implementing Dynamic Symbolic Execution

▶ SystemC simulation is restarted for each new input
▶ Address Concretization is used as a memory model

▶ Primarily uses KLEE’s solver interface and SMT abstractions

GitHub: https://github.com/agra-uni-bremen/clover

6/9

https://github.com/agra-uni-bremen/clover

Error Detection

Problem: Low abstraction level complicates error detection

▶ Majority of embedded software is written in C/C++
▶ Limited protections against C pitfalls (memory safety, …)
▶ Goal: Finding spatial violations in embedded C software
▶ Leverage prior work on HardBound by Devietti et al.

⇒ SW instrumentation to propagate pointer bounds

1 static char buf[BUFFER_SIZE];
2
3 int add_to_buffer(char c) {
4 static size_t index = 0;
5 if (index >= BUFFER_SIZE)
6 return -1;
7
8 // --- [[Original Code]] --
9 char *ptr = &buf[0];

10 *(ptr + index) = c;
11 // --- [[Instrumented]] ---
12 char *ptr = &buf[0];
13 setbound(&ptr, ptr, sizeof(buf));
14 *(ptr + index) = c;
15 // ------- END --------------
16
17 index++;
18 return 0;
19 }

Figure: HardBound compiler pass

7/9

Experiments with IoT Operating Systems

Evaluation: Performed several tests with RIOT, Zephyr, Apache NuttX, …
▶ Tested different modules of the network stack
▶ Found 13 previously unknown bugs in RIOT
▶ Tested modules: DHCP, DNS, RPL, URI parsers, …

8/9

Conclusion

Key Insights:
▶ Accurate peripheral models reduce integration effort for testing SW
▶ Modularity of RISC-V eases integration with symbolic execution

Source Code: https://github.com/agra-uni-bremen/symex-vp
⇒ Used as the basis of various existing scientific publications

More Information: Sören Tempel, Vladimir Herdt, and Rolf Drechsler. SymEx-VP: An Open Source Virtual
Prototype for OS-agnostic Concolic Testing of IoT Firmware. Journal of Systems Architecture (JSA), 20221.

1https://doi.org/10.1016/j.sysarc.2022.102456

9/9

https://github.com/agra-uni-bremen/symex-vp
https://doi.org/10.1016/j.sysarc.2022.102456

