Analyzing System Software
Components Using APl Model
Guided Analysis

Tuba Yavuz and Ken (Yihang) Bai
tuba@ece.ufl.edu, baiyihang@ufl.edu
University of Florida

KLEE Workshop 2022
September 15th-16t
Imperial College, London

mailto:tuba@ece.ufl.edu
mailto:baiyihang@ufl.edu

Motivation

* Analyzing system code using symbolic execution is challenging partly
due to the complexity of Application Programming Interface (API)

* Modeling the APl of complex system code is key to a scalable and
precise analysis

* Techniques that automatically learn the behavior of APIs are not
mature yet

* Automated synthesis: the state space is often huge, guided by some syntax
and/or input/output samples

* Machine learning: still exists a big semantic gap between program
representations and those used by the learning algorithms

Motivation

* Under-constrained symbolic execution as implemented in UC-KLEE can
support component-level analysis

* David A. Ramos and Dawson Engler. Under-Constrained Symbolic Execution:
Correctness Checking for Real Code. USENIX Security 2015.

* UC-KLEE is not open-source
* The goal of modeling is UC-KLEE to filter out false positives

 PROMPT approach for component-level analysis for system code

* APl modeling and APl model guided symbolic execution
* Better control for scalability and precision

Solution: PROMPT & PROSE

https://github.com/sysrel/PROMPT

Component
under analysis

PROMPT

(extends KLEE)

PROSE

APl models Tuba Yavuz and Ken (Yihang) Bai.

Analyzing System Software Components using
API Model Guided Symbolic Execution.
Automated Software Engineering (27:6)

DOI: 10.1007/s10515-020-00276-5

Memory errors

(and other
analysis results)

https://github.com/sysrel/PROMPT

PROMPT: APl Model Guided Symbolic Execution

* Performs under-constrained symbolic execution
* No need for a test driver

e Performs lazily initialization according to the specified APl model

e Extends the KLEE symbolic execution engine to incorporate API
modeling rules during handling of various instructions

* Memory access instructions
 Function calls
* Return instructions

* Has been applied to real-world system code
* Linux device drivers, cryptographic libraries, BlueZ

Modeling with PROSE

* PROSE is the API specification language for PROMPT

e Consists of four parts:
* Global settings
* Data modeling
* Function modeling
* Lifecycle modeling

Modeling Choices for Functions

returnType foo ., primitiveType arg_ I, ..., pointerType argJ

__asm__(...);

}

Modeling Choices for Lazy Initialization of

Struct Types -

struct TypeA {

primitiveType field_m; primitive type field(s) of
TypeA?

How should we constrain the

functionPointerType field_j;

pointerType field_i;
struct TypeB *field_k;

}

Pointer arithmetic using a negative offset

struct B struct B

> >
|
,* } offset a J_ __________ IJ— offset

struct A

Memory out of
bounds error ° = a - offset
when dereferenced!
Just tell PROMPT that
(False positive due to imprecise context!) type A embeds type B

Specifying type embedding relationships

PROSE API MODEL COMPONENT UNDER ANALYSIS

#define cont_of(ptr, type, member) ({ // container_of
void *__mptr = (void *)(ptr);

global settings:

data models: ((type *)(__mptr - offsetof(type, member)));})
. struct A
. type A embeds type B; it a: { int foo(int x, struct B *b) {struct A *ep;
function models: struct B b: L1: ep = cont_of(b,struct A,b);
lifecycle model: char ¢ L2:if (x > 0)
. . - = .
entry-point foo I3 L3: ep->a = x;

L4: else
L5: ep-=a = -x;
L6: return ep->a;

}
STEPS: PROMPT RESULTS:

S export PROMPT=/home/prompt/prompt_build_dir/bin/klee # of paths: 2
S cd PROMPT_examples No memory errors at lines L3, L5,
S cd data_modeling/embeds and L6

S ./run.sh foo.bc 2>&1 | tee o.txt
S Is -l klee-last/ 10

BlueBorne CVE-2017-1000251

BlueBorne

Bluetooth is a very popular wireless short range communication protocol

One of the vulnerabilities dubbed as BlueBorne is in BlueZ
e BlueZis the Bluetooth stack used in the Linux kernel

* The vulnerability can be exploited to perform remote code execution when the extended flow specification
(EFS) feature is utilized in L2CAP

https://github.com/sysrel/PROMPT/tree/master/JASE benchmarks/bluez/lI2cap config rsp

Directory on the VM

* Scd/home/prompt/PROMPT/JASE_benchmarks/bluez/I2cap config_rsp
How to run

* S export PROMPT=/home/prompt/prompt_build_dir/bin/klee

e S ./run.sh 2>/dev/null 1>/dev/null
Check the result

* S more klee-last/test000069.ptr.error

11

https://github.com/sysrel/PROMPT/tree/master/JASE_benchmarks/bluez/l2cap_config_rsp

BlueBorne CVE-2017-1000251 in a nutshell

static inline int l2cap config rsp(struct l2cap conn *conn, , |
struct l2cap cmd hdr *cmd, u8 *data) // No checks on the buffer size!

{

switch (result) {
case L2CAP CONF PENDING:
set bit (CONF REM CONF PEND, &chan->conf state);
if (test bit (CONF LOC CONF PEND, &chan->conf state)) { {

static void l2cap add conf opt(void **ptr,
u8 type, u8 len, unsigned long val)

struct l2cap conf opt *opt = *ptr;

char buf[64]; // the buffer involved in the overflow

len = l2cap parse conf rsp(chan, rsp->data, ..// write to the buffer

*ptr += L2CAP CONF OPT SIZE + len;

len, buf, &result);

static int l2cap parse conf rsp(struct l2cap chan *cha
void *rsp, int len, void *data, ul6 *result)

{

struct 1l2cap conf req *req = data;
void *ptr = reg->data; // points into the buffer
while (len >= L2CAP CONF OPT SIZE) { // len is not limited
len -= l2cap get conf opt(&rsp, &type ..);
switch (type) {
case L2CAP CONF MTU:
12cap add conf opt(&ptr, L2CAP CONF MTU, 2, chan->imtu);
break;

12

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u16
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conf_req
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_OPT_SIZE
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/olen
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_MTU
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_add_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_MTU
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/imtu
https://elixir.bootlin.com/linux/v3.3.8/C/ident/break
https://elixir.bootlin.com/linux/v3.3.8/C/ident/break
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/set_bit
https://elixir.bootlin.com/linux/v3.3.8/C/ident/CONF_REM_CONF_PEND
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conf_state
https://elixir.bootlin.com/linux/v3.3.8/C/ident/test_bit
https://elixir.bootlin.com/linux/v3.3.8/C/ident/CONF_LOC_CONF_PEND
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conf_state
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_add_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_OPT_SIZE

PROSE APl MODEL COMPONENT UNDER ANALYSIS

global settings:

array size 128;
model funcs with asm off;
symbolize inline asm on;
data models: ...
function models: ...

lifecycle model: ...

static inline int l2cap config rsp(
struct l2cap conn *conn,
struct l2cap cmd hdr *cmd,
u8 *data)

{

switch (result) { ..
case L2CAP CONF PENDING:
char buf[64]; // the buffe:
involved in the overflow
len =
l2cap parse conf rsp(chan, rsp-
>data,

len, buf, &result);

13

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

Pointer arithmetic using a

negative offset statio tnline iot 12exp eonrig repl

struct l2cap conn *conn,
struct 1l2cap cmd hdr *cmd,

u8 *data)
[
list_head list l chan =12cap_get chan_by scid(conn, scid);
. rev .
list_head chan_| P o . T{*chan) return ©;
next _ [| switch (result) { ..
2 | case L2CAP CONF PENDING:
©\ | char buf[64]; // the buffe:
e e e e e e oo ' involved in the overflow
len =
I2cap_chan l2cap parse conf rsp(chan, rsp-
model guided >data,
|2cap conn lazy initialization len, buf, &result);
lazy initialization
(argument)

Just tell PROMPT that
type |2cap_chan embeds type list_head

14

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

PROSE APl MODEL COMPONENT UNDER ANALYSIS

data models:

type [2cap_chan embeds type list_head;

(x =12cap_sock_state change cb) where |2cap_sock_state _change cb

is function,
X is |2cap_ops field 5;

(x =12cap_sock_ready cb) where [2cap_sock_ready_cb is function,
x is|2cap_ops field 6;

(x =12cap_sock_suspend_cb) where [2cap_sock_suspend_cb is

function,
x is|2cap_ops field 9;

static inline int l2cap config rsp(
struct l2cap conn *conn,
struct 1l2cap cmd hdr *cmd,
u8 *data)

{

chan =12cap get chan by scid(conn, scid);
if (!chan) return 0;
switch (result) { ..
case L2CAP CONF PENDING:
char buf[64]; // the buffe:

involved in the overflow

len =
l2cap parse conf rsp(chan, rsp-
>data,

len, buf, &result);

15

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

PROSE APl MODEL COMPONENT UNDER ANALYSIS

static inline int l2cap config rsp(
struct l2cap conn *conn,
struct 1l2cap cmd hdr *cmd,

function models:

alloc usb_alloc_coherent sizearg 1 initzero true symbolize false; u8 *data)
alloc __kmalloc sizearg O initzero true symbolize false; { .
alloc vzalloc sizearg O initzero true symbolize false; chan = 12cap_get chan by _scid(conn, scid);
£ KF . if (!chan) return O;
ree kiree memarg O' switch (result) { ..
free vfree memarg 0; case L2CAP CONF PENDING:

char buf[64];// the buffer

involved in the overflow
returnonly skb_clone; len —

returnonly kfree_skb; 12cap parse conf rsp(chan, rsp-
returnonly |2cap_send cmd; >data,
returnonly hci_send_cmd;

returnonly |2cap_clear_timer;

len, buf, &result);

lifecycle model:
entry-point [2cap_config_rsp

16

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

PROSE APl MODEL COMPONENT UNDER ANALYSIS

static inline int l2cap config rsp(
struct l2cap conn *conn,

int I2cap_get _conf opt PROSE(void **ptr, int *type, int *olen,

i *
unﬂgnedlong Va” struct 1l2cap cmd hdr *cmd,
{ u8 *data)
struct [2cap_conf_opt *opt = *ptr; { .
int |en; chan =12cap get chan by scid(conn, scid);
if (!chan) return 0;

switch (result) { ..

opt->type = 1; // L2CAP_CONF_MTU case L2CAP CONF PENDING:
opt->len = 2; char buf[64];// the buffer
involved in the overflow
len =
Ien = LZCAP_CONF_OPT_SIZE + 0pt‘>|en; 12capjarse conf rsp(chan, rsp-

*ptr += len; >data,

len, buf, &result);

*type = opt->type;
xolen = opt->len;
return len;

17

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.19.8/C/ident/L2CAP_CONF_MTU

PROMPT RESULTS:

Error: memory error: out of bound pointer
File: /home/tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluetooth/I2cap_core.c
Line: 2996
assembly.ll line: 43986
Stack:
#000043986 in 12cap_add_conf _opt (ptr=142165200, type=1, len=2, val=43947) at /home/

tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluetooth/I2cap core.c:2996
#100048020 in I12cap_parse_conf_rsp (chan=92475136, rsp=141640710, len, data=14184776

0, result=141548608) at /home/tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluet
ooth/|2cap_core.c:3551
#200047685 in 12cap_config_rsp (conn=141657120, cmd=141631360, cmd_len,
data=1416407
04) at /home/tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluetooth/I2cap_core.c
14186

BlueBorne

PROMPT detects
the BlueBorne

vulnerability
within 5
minutes!

18

PROMPT Evaluation

* Developed registration and deregistration APl models for the video,
sound, and network subsystems of the Linux kernel

* Analyzed the probe and disconnect entry points of 57 drivers from the
video, sound, and network subsystems

* Compared Programming Model Guided Execution with Lazy
Initialization only in terms of coverage and error rate

PROMPT (PMGSE) vs Lazy Init on Coverage

| | | - _| | | | I
40| g ——
3 _
3 90| | BB
: g
o :
= | 1 &
3 5 1w}
5 g ’
£ 1w} -
H % l |
|t [l @
]] | |]]]
a

]
widen mond net video HOMLT) net
Linux device drivers from video, sound, and network subsystems
PMGSE: APl Model Guided Symbolic Execution
PMGSE-RED eliminates some of the manual modeling effort compared to PMGSE-FULL

PROMPT (PGMSE) vs Lazy Init on Error Rate

Error Rate Comparison

50

40

Percentage of Error Paths

20
10 l
. mBl
video sound network

B PROMPT-FULL B PROMPT-RED B LAZY INIT ONLY

21

New Bugs Found with PROMPT

NULL pointer dereference
in the ¢s46xx sound driver

--- a/sound/pci/cs46xx/dsp_spos.c

+++ b/sound/pci/cs46xx/dsp_spos.c

@@ -899,6 +899,9 @@ int cs46xx_dsp_proc_done (struct snd_cs4
struct dsp_spos_instance * ins = chip->dsp_spos_instance;
inti;

+ if (lins)

+ return O;

+
snd_info_free_entry(ins->proc_sym_info_entry);
ins->proc_sym_info_entry = NULL;

Double-free in the
hso network driver

--- a/drivers/net/usb/hso.c.orig
+++ b/drivers/net/usb/hso.c
@@ -2377,7 +2377,9 @@ static void hso_free_net_device(struct h

remove_net_device(hso_net->parent);

if (hso_net->net)
if (hso_net->net &&
hso_net->net->reg_state == NETREG_REGISTERED)
unregister_netdev(hso_net->net);

+ +

API Misuse: Do not unregister
devices that are not registered yet!

22

Conclusions

e PROMPT supports a variety of APl modeling to support component-
level analysis
e Check out https://github.com.sysrel/PROMPT

* |f you use PROMPT for your work, please cite our paper

e Tuba Yavuz and Ken (Yihang) Bai. Analyzing System Software Components using
APl Model Guided Symbolic Execution. Automated Software Engineering
(27:6).DOI: 10.1007/s10515-020-00276-5

* This work has been partially funded by
* National Science Foundation (NSF) awards CNS-1815883 and CNS-1942235
* Semiconductor Research Corporation (SRC)

https://github.com.sysrel/PROMPT

Thank you - Questions?

