
Analyzing System Software
Components Using API Model

Guided Analysis
Tuba Yavuz and Ken (Yihang) Bai

tuba@ece.ufl.edu, baiyihang@ufl.edu

University of Florida

KLEE Workshop 2022

September 15th-16th

Imperial College, London

1

mailto:tuba@ece.ufl.edu
mailto:baiyihang@ufl.edu

Motivation

• Analyzing system code using symbolic execution is challenging partly
due to the complexity of Application Programming Interface (API)

• Modeling the API of complex system code is key to a scalable and
precise analysis

• Techniques that automatically learn the behavior of APIs are not
mature yet
• Automated synthesis: the state space is often huge, guided by some syntax

and/or input/output samples

• Machine learning: still exists a big semantic gap between program
representations and those used by the learning algorithms

2

Motivation

• Under-constrained symbolic execution as implemented in UC-KLEE can
support component-level analysis
• David A. Ramos and Dawson Engler. Under-Constrained Symbolic Execution:

Correctness Checking for Real Code. USENIX Security 2015.

• UC-KLEE is not open-source

• The goal of modeling is UC-KLEE to filter out false positives

• PROMPT approach for component-level analysis for system code
• API modeling and API model guided symbolic execution

• Better control for scalability and precision

3

Solution: PROMPT & PROSE

Component
under analysis

PROSE
API models

PROMPT
(extends KLEE)

Memory errors
(and other

analysis results)

https://github.com/sysrel/PROMPT

Tuba Yavuz and Ken (Yihang) Bai.
Analyzing System Software Components using
API Model Guided Symbolic Execution.
Automated Software Engineering (27:6)
DOI: 10.1007/s10515-020-00276-5 4

https://github.com/sysrel/PROMPT

PROMPT: API Model Guided Symbolic Execution

• Performs under-constrained symbolic execution
• No need for a test driver

• Performs lazily initialization according to the specified API model

• Extends the KLEE symbolic execution engine to incorporate API
modeling rules during handling of various instructions
• Memory access instructions
• Function calls
• Return instructions

• Has been applied to real-world system code
• Linux device drivers, cryptographic libraries, BlueZ

5

Modeling with PROSE

• PROSE is the API specification language for PROMPT

• Consists of four parts:
• Global settings

• Data modeling

• Function modeling

• Lifecycle modeling

6

Modeling Choices for Functions

returnType foo(…, primitiveType arg_i, …, pointerType arg_j) {

…
__asm__(…);

…
}

If return value is a pointer type, should
we also create NULL returning cases when
using a model for foo?

Should we model foo by
abstracting away the function body
and symbolizing the return value?

If foo is an entry point, should
we use a constant value or a
symbolic value for an argument?

If the argument is a pointer type and to be
symbolized, what should be the size of the array?
A constant value or an expression involving another
argument of the same function?

If foo has inline assembly
should we model foo
automatically?

Should we execute foo’s body
and symbolize the return value
of inline assembly?

Should we havoc the
arguments to model the
side-effect of foo?

Should foo be modeled as
a memory (de)allocator?

Should we model foo with
another function definition?

Should entry-point foo be
followed by bar on a specific
return value?

Modeling Choices for Lazy Initialization of
Struct Types

8

struct TypeA {
primitiveType field_m;
…
functionPointerType field_j;
…
pointerType field_i;
…
struct TypeB *field_k;

}

Should we initialize the
function pointer field in
TypeA to NULL or to a
specific function?

Should we assume a TypeB
object is embedded inside a
TypeA object when lazy
initializing field_k?

Is TypeA a
singleton type?

How should we constrain the
primitive type field(s) of
TypeA?

How should we constrain the
size of the array for the pointer
field?

Pointer arithmetic using a negative offset

Just tell PROMPT that
type A embeds type B9

struct B

struct A

offset

1

2

2 = 1 - offset

struct B

offset

1

2

Memory out of
bounds error
when dereferenced!

(False positive due to imprecise context!)

Specifying type embedding relationships
PROSE API MODEL COMPONENT UNDER ANALYSIS

STEPS: PROMPT RESULTS:

$ export PROMPT=/home/prompt/prompt_build_dir/bin/klee
$ cd PROMPT_examples
$ cd data_modeling/embeds
$./run.sh foo.bc 2>&1 | tee o.txt
$ ls –l klee-last/

of paths: 2
No memory errors at lines L3, L5,
and L6

global settings:
data models:

type A embeds type B;
function models:
lifecycle model:

entry-point foo

#define cont_of(ptr, type, member) ({ // container_of
void *__mptr = (void *)(ptr);
((type *)(__mptr - offsetof(type, member)));})

struct A {
int a;
struct B b;
char c;
};

int foo(int x, struct B *b) {struct A *ep;
L1: ep = cont_of(b,struct A,b);
L2: if (x > 0)
L3: ep->a = x;
L4: else
L5: ep->a = -x;
L6: return ep->a;

}

10

BlueBorne CVE-2017-1000251

• Bluetooth is a very popular wireless short range communication protocol

• One of the vulnerabilities dubbed as BlueBorne is in BlueZ
• BlueZ is the Bluetooth stack used in the Linux kernel
• The vulnerability can be exploited to perform remote code execution when the extended flow specification

(EFS) feature is utilized in L2CAP

• https://github.com/sysrel/PROMPT/tree/master/JASE_benchmarks/bluez/l2cap_config_rsp

• Directory on the VM

• $ cd /home/prompt/PROMPT/JASE_benchmarks/bluez/l2cap_config_rsp

• How to run

• $ export PROMPT=/home/prompt/prompt_build_dir/bin/klee

• $./run.sh 2>/dev/null 1>/dev/null

• Check the result

• $ more klee-last/test000069.ptr.error

11

https://github.com/sysrel/PROMPT/tree/master/JASE_benchmarks/bluez/l2cap_config_rsp

BlueBorne CVE-2017-1000251 in a nutshell

static int l2cap_parse_conf_rsp(struct l2cap_chan *chan,

void *rsp, int len, void *data, u16 *result)

{

struct l2cap_conf_req *req = data;

void *ptr = req->data; // points into the buffer

while (len >= L2CAP_CONF_OPT_SIZE) { // len is not limited

len -= l2cap_get_conf_opt(&rsp, &type …);

switch (type) {

case L2CAP_CONF_MTU:

l2cap_add_conf_opt(&ptr, L2CAP_CONF_MTU, 2, chan->imtu);

break;

}

static inline int l2cap_config_rsp(struct l2cap_conn *conn,

struct l2cap_cmd_hdr *cmd, u8 *data)

{ …

switch (result) { …

case L2CAP_CONF_PENDING:

set_bit(CONF_REM_CONF_PEND, &chan->conf_state);

if (test_bit(CONF_LOC_CONF_PEND, &chan->conf_state)) {

char buf[64]; // the buffer involved in the overflow

len = l2cap_parse_conf_rsp(chan, rsp->data,

len, buf, &result);

…

static void l2cap_add_conf_opt(void **ptr,

u8 type, u8 len, unsigned long val)

{

struct l2cap_conf_opt *opt = *ptr;

…// write to the buffer

*ptr += L2CAP_CONF_OPT_SIZE + len;

}

// No checks on the buffer size!

12

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u16
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conf_req
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_OPT_SIZE
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/olen
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_MTU
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_add_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_MTU
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/imtu
https://elixir.bootlin.com/linux/v3.3.8/C/ident/break
https://elixir.bootlin.com/linux/v3.3.8/C/ident/break
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/set_bit
https://elixir.bootlin.com/linux/v3.3.8/C/ident/CONF_REM_CONF_PEND
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conf_state
https://elixir.bootlin.com/linux/v3.3.8/C/ident/test_bit
https://elixir.bootlin.com/linux/v3.3.8/C/ident/CONF_LOC_CONF_PEND
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conf_state
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_add_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conf_opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/opt
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_OPT_SIZE

COMPONENT UNDER ANALYSISPROSE API MODEL

global settings:

array size 128;

model funcs with asm off;

symbolize inline asm on;

data models: …

function models: …

lifecycle model: …

static inline int l2cap_config_rsp(

struct l2cap_conn *conn,

struct l2cap_cmd_hdr *cmd,

u8 *data)

{ …

switch (result) { …

case L2CAP_CONF_PENDING:

char buf[64]; // the buffer

involved in the overflow

len =

l2cap_parse_conf_rsp(chan, rsp-

>data,

len, buf, &result);

…

13

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

Pointer arithmetic using a
negative offset

Just tell PROMPT that
type l2cap_chan embeds type list_head

14

COMPONENT UNDER ANALYSIS

static inline int l2cap_config_rsp(

struct l2cap_conn *conn,

struct l2cap_cmd_hdr *cmd,

u8 *data)

{ …

chan = l2cap_get_chan_by_scid(conn, scid);
if (!chan) return 0;
switch (result) { …

case L2CAP_CONF_PENDING:

char buf[64]; // the buffer

involved in the overflow

len =

l2cap_parse_conf_rsp(chan, rsp-

>data,

len, buf, &result);

…

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

COMPONENT UNDER ANALYSISPROSE API MODEL

static inline int l2cap_config_rsp(

struct l2cap_conn *conn,

struct l2cap_cmd_hdr *cmd,

u8 *data)

{ …

chan = l2cap_get_chan_by_scid(conn, scid);
if (!chan) return 0;
switch (result) { …

case L2CAP_CONF_PENDING:

char buf[64]; // the buffer

involved in the overflow

len =

l2cap_parse_conf_rsp(chan, rsp-

>data,

len, buf, &result);

…

data models:

type l2cap_chan embeds type list_head;

(x = l2cap_sock_state_change_cb) where l2cap_sock_state_change_cb
is function,

x is l2cap_ops field 5;

(x = l2cap_sock_ready_cb) where l2cap_sock_ready_cb is function,
x is l2cap_ops field 6;

(x = l2cap_sock_suspend_cb) where l2cap_sock_suspend_cb is
function,

x is l2cap_ops field 9;

15

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

COMPONENT UNDER ANALYSISPROSE API MODEL

static inline int l2cap_config_rsp(

struct l2cap_conn *conn,

struct l2cap_cmd_hdr *cmd,

u8 *data)

{ …

chan = l2cap_get_chan_by_scid(conn, scid);
if (!chan) return 0;
switch (result) { …

case L2CAP_CONF_PENDING:

char buf[64];// the buffer

involved in the overflow

len =

l2cap_parse_conf_rsp(chan, rsp-

>data,

len, buf, &result);

…

function models:

alloc usb_alloc_coherent sizearg 1 initzero true symbolize false;
alloc __kmalloc sizearg 0 initzero true symbolize false;
alloc vzalloc sizearg 0 initzero true symbolize false;
free kfree memarg 0;
free vfree memarg 0;

returnonly skb_clone;
returnonly kfree_skb;
returnonly l2cap_send_cmd;
returnonly hci_send_cmd;
returnonly l2cap_clear_timer;

…
lifecycle model:

entry-point l2cap_config_rsp

16

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp

COMPONENT UNDER ANALYSISPROSE API MODEL

static inline int l2cap_config_rsp(

struct l2cap_conn *conn,

struct l2cap_cmd_hdr *cmd,

u8 *data)

{ …

chan = l2cap_get_chan_by_scid(conn, scid);
if (!chan) return 0;
switch (result) { …

case L2CAP_CONF_PENDING:

char buf[64];// the buffer

involved in the overflow

len =

l2cap_parse_conf_rsp(chan, rsp-

>data,

len, buf, &result);

…

int l2cap_get_conf_opt_PROSE(void **ptr, int *type, int *olen,
unsigned long *val)

{
struct l2cap_conf_opt *opt = *ptr;
int len;

opt->type = 1; // L2CAP_CONF_MTU
opt->len = 2;

len = L2CAP_CONF_OPT_SIZE + opt->len;
*ptr += len;

*type = opt->type;
*olen = opt->len;

return len;
}

17

https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_config_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_cmd_hdr
https://elixir.bootlin.com/linux/v3.3.8/C/ident/u8
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_get_chan_by_scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/conn
https://elixir.bootlin.com/linux/v3.3.8/C/ident/scid
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/switch
https://elixir.bootlin.com/linux/v3.3.8/C/ident/L2CAP_CONF_PENDING
https://elixir.bootlin.com/linux/v3.3.8/C/ident/l2cap_parse_conf_rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/chan
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.3.8/C/ident/rsp
https://elixir.bootlin.com/linux/v3.19.8/C/ident/L2CAP_CONF_MTU

PROMPT RESULTS:

Error: memory error: out of bound pointer
File: /home/tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluetooth/l2cap_core.c
Line: 2996
assembly.ll line: 43986
Stack:

#000043986 in l2cap_add_conf_opt (ptr=142165200, type=1, len=2, val=43947) at /home/

tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluetooth/l2cap_core.c:2996
#100048020 in l2cap_parse_conf_rsp (chan=92475136, rsp=141640710, len, data=14184776

0, result=141548608) at /home/tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluet
ooth/l2cap_core.c:3551

#200047685 in l2cap_config_rsp (conn=141657120, cmd=141631360, cmd_len,
data=1416407

04) at /home/tuba/Documents/tools/clang-kernel-build/linux-stable/net/bluetooth/l2cap_core.c
:4186

PROMPT detects
the BlueBorne
vulnerability

within 5
minutes!

18

PROMPT Evaluation

• Developed registration and deregistration API models for the video,
sound, and network subsystems of the Linux kernel

• Analyzed the probe and disconnect entry points of 57 drivers from the
video, sound, and network subsystems

• Compared Programming Model Guided Execution with Lazy
Initialization only in terms of coverage and error rate

19

PROMPT (PMGSE) vs Lazy Init on Coverage

20

Linux device drivers from video, sound, and network subsystems
PMGSE: API Model Guided Symbolic Execution
PMGSE-RED eliminates some of the manual modeling effort compared to PMGSE-FULL

PROMPT (PGMSE) vs Lazy Init on Error Rate

21

0

10

20

30

40

50

60

70

80

90

video sound network

Pe
rc

en
ta

ge
 o

f
Er

ro
r

Pa
th

s

Error Rate Comparison

PROMPT-FULL PROMPT-RED LAZY INIT ONLY

New Bugs Found with PROMPT

22

NULL pointer dereference
in the cs46xx sound driver

Double-free in the
hso network driver

--- a/sound/pci/cs46xx/dsp_spos.c
+++ b/sound/pci/cs46xx/dsp_spos.c
@@ -899,6 +899,9 @@ int cs46xx_dsp_proc_done (struct snd_cs4

struct dsp_spos_instance * ins = chip->dsp_spos_instance;
int i;

+ if (!ins)
+ return 0;
+

snd_info_free_entry(ins->proc_sym_info_entry);
ins->proc_sym_info_entry = NULL;

--- a/drivers/net/usb/hso.c.orig
+++ b/drivers/net/usb/hso.c
@@ -2377,7 +2377,9 @@ static void hso_free_net_device(struct h

remove_net_device(hso_net->parent);

- if (hso_net->net)
+ if (hso_net->net &&
+ hso_net->net->reg_state == NETREG_REGISTERED)

unregister_netdev(hso_net->net);

API Misuse: Do not unregister
devices that are not registered yet!

Conclusions

• PROMPT supports a variety of API modeling to support component-
level analysis
• Check out https://github.com.sysrel/PROMPT

• If you use PROMPT for your work, please cite our paper
• Tuba Yavuz and Ken (Yihang) Bai. Analyzing System Software Components using

API Model Guided Symbolic Execution. Automated Software Engineering
(27:6).DOI: 10.1007/s10515-020-00276-5

• This work has been partially funded by
• National Science Foundation (NSF) awards CNS-1815883 and CNS-1942235

• Semiconductor Research Corporation (SRC)

23

https://github.com.sysrel/PROMPT

Thank you - Questions?

24

