SIFT: A Multithreading
Extension to KLEE

Tuba Yavuz
Associate Professor

University of Florida

KLEE Workshop 2022

Imperial College, London

Motivation

* Detecting memory vulnerabilities in multithreaded code is challenging

* Existing work use various heuristics such as context bounding or
schedule variation w.r.t. some interference points

* Existing property directed scheduling approaches handle assertions
only and rely on an offline static analysis

e Symbolic execution is effective in memory vulnerabilities

* The path explosion in symbolic execution gets exacerbated for
multithreaded code

* There is a need for property directed symbolic execution of
multithreaded code.

Approach

 Compute data-flow facts for property relevant code locations based
on explored symbolic execution paths

* Memory deallocations, memory accesses based on pointer arithmetic,
assertion checks

e [dentify instructions or Interleaving Points (context-switch points)
* Impact property relevant code locations
* Interference points of multiple threads

* As new paths get explored, update the interleaving points
* Until the property violation is detected or a timeout is reached

SIFT’s Exploration Steps

Conservative thread scheduling,

Step 1 i.e., when a thread blocks schedule another

Path scheduling
(DFS, Random+coverage)

1P,

New thread scheduling scenarios due to

>tep 2 interleaving points in IP,

Path scheduling
(DFS, Random+coverage) | P2

New thread scheduling scenarios due to

Step 3 interleaving points in IP, \ IP;

Path scheduling
(DFS, Random+coverage)

One Type of Property: Memory Safety

9void xthreadl (void xarg) {

10 pthread_mutex_lock (&mutex); Property: Memory Safety
1 if (data > 0)

12 (free(name)] <. ° Are there any accesses

13 pthread_mutex_unMO deallocated memory?
4 return 0; Are there any memory

16 that get deallocated twice?
7void xthreadZ(void rarg) { Are there any NULL pointer
18 pthread_mutex_lock (&mutex) ;

dereferences?

19 data++;
21 ind++;

» return 0; memory accesses?

23 }

24

»s void *thread3(void *arq)
26 pthread_mutex_lock (&
27 [letter = name[10]);
28 pthread_mutex_unlock (&mutex)
9 letter =(address[l2+datal}
3 [zipcode[ind] = '1');

31 return 0O;

d
<

|dentifying Property Re
Objects & Instructions -

9void xthreadl (void xarq)
10

if ((data > 0)
free (name) ;
pthread_mutex_unloc

return O;

17void *thread2(void xargqg)

pthread_mutex_unlocC

23
24

»s void *thread3(void *arq)
26

Interfering accesses

letter

27 name [10];

28

evant Memory

pthread_mutex_lock (&mutex);

(&

pthread_mutex_lock (&mutex) ;

pthread_mutex_lock (&mutex) ;

pthread_mutex_unlock (&

‘rom Explored Paths

{ Objects accessed for read/write and write
by different threads that may

run concu rrently
mutex) ;

{

Interfering accesses

{

mutex) ;

29 letter

laddress[12+data]}

[zipcode[ind] = "1);

return 0O;

31
32}

|dentifying Property Re
Objects & Instructions

evant Memory

from Explored Paths

{

Used as an argument (name) of a

9void xthreadl (void xarq)
Static analysis fOI' 10 pthread_. mutex_lock (&mutex) ;
. o . I '1f[(data]
'dentlfy'ng target 12 [free name) 3

function callsites 3
reachable from untaken

branches 16

7void *thread? (void =xar
makes the branch : (9)

18 pthread_mutex_lock (&mutex) ;

Pt aread_mutex un4W(T‘mf“:‘°"*'\target function (free)
14 0;

(User Input)

{

instruction as 19 data++;

20 pthread_mutex_unlock (&mutex) ;
prope:;ty relevant 2 ind++; Hidden dependency
even II Salta was 2 } return U; to be explored later
not globa >

24
»s void *thread3(void *arq)
26 pthread_mutex_lock (&m
27 letter = 1C

28 pthread_mutex_unlock (&mutex) ;

29 letter =

30 zipcode[ind] = '1"';
31 return 0O;

32}

address[12+datal;

ldentitying Property Relevant Memory
Objects & Instructions from Explored Paths

9void xthreadl (void xarg) {

* Lock acquire & release l pt;ffr(zag_muteﬁlock (amutex) ;]
. . 11 1 ata -~ U
instructions that enclo 2 Free (name); .

[pthread_mutex_unlosk (&mutex);
14 return O;

interfering instructions
using a common lock

rmvoid *thread2(void rarg) {
pthread_mutex_lock(&mutex);]
[data——;]<\~\\\\‘
thread mutex unlocC
21 ind++;

22 return O;

23 }

24

s void *thread3(void rarg) {

26 pthread_mutex_lock (&mutex) ;

27 letter = name[10];

28 pthread_mutex_unlock (&mutex) ;
29 letter = address|[l2+datal;

30 zipcode[ind] = '1";

31 return 0O;

32}

Interfering accesses

ldentitying Property Relevant Memory
Objects & Instructions from Explored Paths

9void xthreadl (void xarg) {

10 pthread_mutex_lock (&mutex) ;

11 if (data > 0)

12 free (name) ;

13 pthread_mutex_unlock (&émutex) ;
14 return O;

Instructions that define

. . 16 Used in memory access index
objects (data and ind) 17void sthread2(void +arg) f{ _ q :’ 4ind
: 18 pthread_mutex_lock (&mutex); expressions: data and In
accessezd in memory' > (data ;]
access index expressions 20 pthread_mutex_unlock (&mutex) ;
become property 2> (ind++;]
22 return 0O;
relevant 2%)

24
s void *thread3(void rarg) {
26 pthread_mutex_lock (&mutex) ;

27 letter = name[10];

28 pthread_mutex_unlock (&mutex) ;
% letter =[address[l12+data]}«

3 [(zipcode[ind] = '1');

<&
<

31 return 0O;

Buggy Thread Schedules Detected by SIFT

Thread Schedule 2

9void +threadl (void xarqg) {

10 @thread_mutex_lock(&mutex);]
1 if (data > 0)

12 free (name) ;

13 bthread_mutex_unlock(&mutexn;
14 return O;

Interleaving o .
. 17void *thread2(void xarg) {
Points 18 (pthread_mutex_lock (smutex); |

19 data++;
([pthread_mutex_unlock (&mutex));

return 0;

(IPs)

*thread3 (void rargqg) {
ad_mutex_lock (&mutex) ;

Thread Schedule 1

1

y

= name[10];
mutex_unlock (&émutex) ;

zipcode[ind] = '"1');
31 return O;

letter =|address[l2+data]}—— Memory overflow

»

>

2

3

Use-after-free ‘

Optimizations

* Three modes for grouping the interleaving points (IPs)

* One: Put all in a single set and generate schedules by considering every IP in
this set

* More likely to detect the error
* May lead to too many thread interleaving scenarios
« Common: Create partitions by grouping IPs that access common memory
objects
* May detect errors that involve scheduling decisions over a single memory object
* Fewer scheduling scenarios than the One mode
 Single: Create a separate partition for each IP
* May detect errors that require a single error relevant context switch
* May generate the least number of scheduling scenarios

SIFT Implementation

LLVM
Bitcode

Configuration

options
(mode=0ne,
Common,

Thread
Scheduler

KLEE extended
with
Multithreaded
Execution State

Data-flow
Analysis

Extensions are shown in blue

Error Report
(Thread Schedule,

Thread states)
and statistics

Path
Conditions/
Tests

Number of bugs detected

Results on 10 CVE + 10 Svcomp benchmarks

Error Detection
(Random+Coverage Scheduling,
N=2)

Error Detection
(Depth-First Search Scheduling,
N=2)

15 15
10 Common
10

O
(]
5] g 5]] . >0.07s >0.07s >0.07s
0 — - 0 _ <19.96s <52.09s <24.62s
Single Common One Q Single Common One
©
(%]
o0
-
Error Detection 2 Error Detection Timeout=500secs
(Random+Coverage Scheduling, o (Depth-First Search Scheduling,
N=3 v =
) @ N=3)
15 E 15
-
10 z 10
5 H - N I I
o N 0
Single Common One Single Common One

SIFT can detect the bugs
in all 10 CVE benchmarks

whereas ConVul can detect ConVul paper: . -
in onIy 9 of them. Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, Bin Liang:

Detecting concurrency memory corruption vulnerabilities.
ESEC/SIGSOFT FSE 2019: 706-717

Conclusion

* SIFT performs on-the-fly data-flow analysis to steer the thread
schedule towards property violation
* Memory safety + Custom assertions
e https://github.com/sysrel/SIFT

* Improving scalability:
* Integrate SIFT into dynamic analysis

e Apply SIFT at the component-level similar to under-constrained symbolic
execution

THANK YOU!

