
SIFT:	A	Multithreading	
Extension	to	KLEE

Tuba	Yavuz
Associate	Professor
University	of	Florida

KLEE	Workshop	2022
Imperial	College,	London



Motivation

• Detecting	memory	vulnerabilities	in	multithreaded	code	is	challenging
• Existing	work	use	various	heuristics	such	as	context	bounding	or	
schedule	variation	w.r.t.	some	interference	points
• Existing	property	directed	scheduling	approaches	handle	assertions	
only	and	rely	on	an	offline	static	analysis
• Symbolic	execution	is	effective	in	memory	vulnerabilities
• The	path	explosion	in	symbolic	execution	gets	exacerbated	for	
multithreaded	code
• There	is	a	need	for	property	directed	symbolic	execution	of	
multithreaded	code.



Approach

• Compute	data-flow	facts	for	property	relevant	code	locations	based	
on	explored	symbolic	execution	paths
• Memory	deallocations,	memory	accesses	based	on	pointer	arithmetic,	
assertion	checks

• Identify	instructions	or	Interleaving	Points (context-switch	points)
• Impact	property	relevant	code	locations
• Interference	points	of	multiple	threads

• As	new	paths	get	explored,	update	the	interleaving	points
• Until	the	property	violation	is	detected	or	a	timeout	is	reached



SIFT’s	Exploration	Steps

Step	1 Conservative	thread	scheduling,	
i.e.,	when	a	thread	blocks	schedule	another

IP1

Step	2 New	thread	scheduling	scenarios	due	to	
interleaving	points	in	IP1

IP2

Step	3
New	thread	scheduling	scenarios	due	to	
interleaving	points	in	IP2 \ IP1

.

.

.

Path	scheduling
(DFS,	Random+coverage)

Path	scheduling
(DFS,	Random+coverage)

Path	scheduling
(DFS,	Random+coverage)



One	Type	of	Property:	Memory	Safety

Property:	Memory	Safety
• Are	there	any	accesses	
to	deallocated	memory?
• Are	there	any	memory	
that	get	deallocated	twice?
• Are	there	any	NULL	pointer	
dereferences?	
• Are	there	any	out	of	bounds
memory	accesses?



Identifying	Property	Relevant	Memory	
Objects	&	Instructions	from	Explored	Paths

Objects accessed for read/write and write
by different threads that may
run concurrently

Interfering	accesses

Interfering	accesses



Identifying	Property	Relevant	Memory	
Objects	&	Instructions	from	Explored	Paths

Used	as	an	argument	(name)	of	a	
target	function	(free)
(User	Input)

• Static	analysis	for	
identifying	target	
function	callsites
reachable	from	untaken	
branches
• makes	the	branch	

instruction	as	
property	relevant	
even	if	data	was	
not	global

Hidden dependency
to be explored later



Identifying	Property	Relevant	Memory	
Objects	&	Instructions	from	Explored	Paths

• Lock	acquire	&	release	
instructions	that	enclose	
interfering	instructions	
using	a	common	lock

Interfering accesses



Identifying	Property	Relevant	Memory	
Objects	&	Instructions	from	Explored	Paths

Used	in	memory	access	index	
expressions:	data	and	ind

Instructions	that	define
objects	(data	and	ind)	
accessed	in	memory	
access	index	expressions	
become	property	
relevant	



Buggy	Thread	Schedules	Detected	by	SIFT
Thread	Schedule	1 Thread	Schedule	2

Use-after-free

Memory	overflow

2

1

3

1

2

3

Interleaving
Points
(IPs)



Optimizations

• Three	modes	for	grouping	the	interleaving	points	(IPs)
• One:	Put	all	in	a	single	set	and	generate	schedules	by	considering	every	IP	in	
this	set
• More	likely	to	detect	the	error
• May	lead	to	too	many	thread	interleaving	scenarios

• Common:	Create	partitions	by	grouping	IPs	that	access	common	memory	
objects
• May	detect	errors	that	involve	scheduling	decisions	over	a	single	memory	object
• Fewer	scheduling	scenarios	than	the	One	mode

• Single:	Create	a	separate	partition	for	each	IP	
• May	detect	errors	that	require	a	single	error	relevant	context	switch
• May	generate	the	least	number	of	scheduling	scenarios



SIFT	Implementation

IPs	Thread
Scheduler

Data-flow
Analysis

Paths

Configuration	
options

(mode=One,	
Common,	
Single)

Error	Report
(Thread	Schedule,
Thread	states)
and	statistics

Path	
Conditions/
Tests

KLEE	extended	
with

Multithreaded
Execution	State

LLVM	
Bitcode

Extensions	are	shown	in	blue



Results	on	10	CVE	+	10	Svcomp benchmarks

0

5

10

15

Single Common One

Error	Detection
(Random+Coverage Scheduling,	

N=2)

0

5

10

15

Single Common One

Error	Detection
(Depth-First	Search	Scheduling,	

N=2)

0

5

10

15

Single Common One

Error	Detection
(Random+Coverage Scheduling,	

N=3)

0

5

10

15

Single Common One

Error	Detection
(Depth-First	Search	Scheduling,	

N=3)

SIFT can	detect	the	bugs	
in	all	10	CVE	benchmarks	
whereas	ConVul can	detect	

in	only	9	of	them.
ConVul paper:
Yan	Cai, Biyun	Zhu, Ruijie	Meng, Hao	Yun, Liang	He, Purui	Su, Bin	Liang:
Detecting	concurrency	memory	corruption	vulnerabilities.
ESEC/SIGSOFT	FSE 2019: 706-717

N
um

be
r	o

f	b
ug
s	d

et
ec
te
d

N
um

be
r	o

f	b
ug
s	d

et
ec
te
d

Timeout=500secs

Single Common One

>	0.07s	
<	19.96s	

>0.07s
<52.09s

>0.07s
<24.62s



Conclusion

• SIFT	performs	on-the-fly	data-flow	analysis	to	steer	the	thread	
schedule	towards	property	violation
• Memory	safety	+	Custom	assertions
• https://github.com/sysrel/SIFT

• Improving	scalability:
• Integrate	SIFT	into	dynamic	analysis
• Apply	SIFT	at	the	component-level	similar	to	under-constrained	symbolic	
execution



THANK YOU!


