
4th International KLEE Workshop on Symbolic Execution, April 15-16 2024, Lisbon, Portugal

Automated Generation of Database
Mocks with Symbolic Execution

C. Cornejo(1), A. Borda(1), N. Aguirre(1), M. Frias(2), P. Ponzio(1) & G. Regis(1)
(1)CONICET and University of Rio Cuarto, Argentina
(2)University of Texas at El Paso, USA

Software applications and databases

• Most software applications need to
persist information, typically via the
interaction with databases

• Testing some methods within such
applications thus requires producing
database states, besides the direct
inputs of the method under test

• In particular, exercising certain
program paths may depend on
specific data stored in the
database

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

Software applications and databases

• Most software applications need to
persist information, typically via the
interaction with databases

• Testing some methods within such
applications thus requires producing
database states, besides the direct
inputs of the method under test

• In particular, exercising certain
program paths may depend on
specific data stored in the
database

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

Software applications and databases

• Most software applications need to
persist information, typically via the
interaction with databases

• Testing some methods within such
applications thus requires producing
database states, besides the direct
inputs of the method under test

• In particular, exercising certain
program paths may depend on
specific data stored in the
database

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

Software applications and databases

• Most software applications need to
persist information, typically via the
interaction with databases

• Testing some methods within such
applications thus requires producing
database states, besides the direct
inputs of the method under test

• In particular, exercising certain
program paths may depend on
specific data stored in the
database

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

Symbolic execution can help us produce inputs, including database
contents, to exercise such paths

Related (previous) Work

• Symbolic execution for DB applications (M. Marcozzi et al.)

• Implemented for Java + JDBC

• Ad hoc SE engine

• Z3 as backend solver

• Concolic execution for DB applications (T. Xie et al.)

• Implemented for C# + .NET SqlClient

• Realized as a PEX extension

• Z3 as backend solver

M. Marcozzi, W. Vanhoof, J.-L. Hainaut: Towards testing of full-scale SQL applications using relational symbolic execution. CSTVA 2014

M. Marcozzi, W. Vanhoof, J.-L. Hainaut: Relational symbolic execution of SQL code for unit testing of database programs. Sci. Comput. Program. (2015)

K. Pan, X. Wu, T. Xie: Program-input generation for testing database applications using existing database states. Autom. Softw. Eng. 22(4) (2015)

K. Pan, X. Wu, T. Xie: Guided test generation for database applications via synthesized database interactions. ACM Trans. Softw. Eng. Methodol. (2014)

Is Z3 the “right” solver for
relational constraints?

Is Z3 the “right” solver for
relational constraints?

• Database constraints are inherently relational

Is Z3 the “right” solver for
relational constraints?

• Database constraints are inherently relational

• Previous works use Z3 for “relational” constraint solving

• Essentially, each relation is encoded
as uninterpreted function ,
and relational constraints as constraints on these functions

R ⊆ T1 × T2 × … × Tk
fR : T1 × T2 × … × Tk → Bool

Is Z3 the “right” solver for
relational constraints?

• Database constraints are inherently relational

• Previous works use Z3 for “relational” constraint solving

• Essentially, each relation is encoded
as uninterpreted function ,
and relational constraints as constraints on these functions

R ⊆ T1 × T2 × … × Tk
fR : T1 × T2 × … × Tk → Bool

• But relational constraint solving in an area on its own

• Are we missing relational constraint solving advances by
using “non-relational” SMT?

State-of-the-art in Relational
Constraint Solving

State-of-the-art in Relational
Constraint Solving

• Bounded relational constraint solving

• Alloy/KodKod

• Based on SAT, implements many optimizations

State-of-the-art in Relational
Constraint Solving

• Bounded relational constraint solving

• Alloy/KodKod

• Based on SAT, implements many optimizations

• Relational constraint solving based on set theory

• {log}

• Complete for a theory of finite relations

State-of-the-art in Relational
Constraint Solving

• Bounded relational constraint solving

• Alloy/KodKod

• Based on SAT, implements many optimizations

• Relational constraint solving based on set theory

• {log}

• Complete for a theory of finite relations

• Relational constraint solving based on an algebraic
theory of finite relations

• Implemented on CVC4

• Complete for a language over many sorted
finite relations (including transitive closure)

“Non-relational” SMT vs Relational
Constraint Solving

• No comprehensive comparison of existing approaches

• Some studies compare some specific techniques

• e.g., Alloy vs non-relational SMT, Alloy vs a relational
decision procedure, …

• Some studies are outdated, and use restricted
datasets, among other issues

Database application constraints:
“Non-relational” SMT vs
Relational Constraint Solving

1

1000

1000000

Select Update Transactions Clients and Products CourseNameExists getCourseIDByName createNewUser

Z3 Alloy (original)

X X X X X X

(*) log scale

M. Marcozzi, W. Vanhoof, J.-L. Hainaut: Relational symbolic execution of SQL code for unit testing of database programs. Sci. Comput. Program. (2015)

Database application constraints:
“Non-relational” SMT vs
Relational Constraint Solving

(*) log scale

Our revisited study

1

1000

1000000

Select Update Transactions Clients and Products CourseNameExists getCourseIDByName createNewUser

Z3 Alloy (revisited)

Opportunities with relational constraint
solving (in the context of DB Applications)

Opportunities with relational constraint
solving (in the context of DB Applications)

• Efficiency

• SAT bounded relational solving is more efficient for
satisfiable constraints (*)

(*) Baoluo Meng, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett: Relational Constraint Solving in SMT. CADE 2017

Opportunities with relational constraint
solving (in the context of DB Applications)

• Efficiency

• SAT bounded relational solving is more efficient for
satisfiable constraints (*)

• Effectiveness

• E.g., {log} generates finite representation of all models of a
relational formula

• Kind of “symbolic” interpretation of a formula

(*) Baoluo Meng, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett: Relational Constraint Solving in SMT. CADE 2017

Opportunities with relational constraint
solving (in the context of DB Applications)

• Efficiency

• SAT bounded relational solving is more efficient for
satisfiable constraints (*)

• Effectiveness

• E.g., {log} generates finite representation of all models of a
relational formula

• Kind of “symbolic” interpretation of a formula

• Room for combined techniques for relational constraint solving

(*) Baoluo Meng, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett: Relational Constraint Solving in SMT. CADE 2017

Interaction between SMT and
SAT in DB constraint solving

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

theShelf = x0 ∧ success = true ∧ shelves ≠ ∅ ∧ #Shelf > 1

Shelf

id numberOfBooks

Path condition

Symbolic DB

id is primary key

numberOfBooks > 0

Relational SAT

Standard SMT

Interaction between SMT and
SAT in DB constraint solving

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

theShelf = x0 ∧ success = true ∧ shelves ≠ ∅ ∧ #Shelf > 1

Path condition

Symbolic DB

id is primary key

numberOfBooks > 0

id numberOfBooks

x0 n0

y0 n1

U

Shelf

Relational SAT

Standard SMT

Interaction between SMT and
SAT in DB constraint solving

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

theShelf = x0 ∧ success = true ∧ shelves ≠ ∅ ∧ #Shelf > 1

Path condition

Symbolic DB

id is primary key

numberOfBooks > 0

id numberOfBooks

x0 n0

y0 n1

U

Shelf

y0 ≠ x0 ∧ n0 > 0 ∧ n1 > 0

Relational SAT

Standard SMT

Interaction between SMT and
SAT in DB constraint solving

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

 if (con == null || newBooks == null) throw new IllegalArgumentException();

 int i = 0;

 List<Integer> addedBooks = new ArrayList<Integer>();

 while (i < newBooks.size()) {

 Book currBook = newBooks.get(i);

 int theShelf = shelfForBook(currBook.getId());

 boolean success = true;

 ResultSet shelves = con.createStatement()

 .executeQuery("SELECT id FROM shelf WHERE id="

 + theShelf);

 if (!shelves.next()) {

 con.createStatement().execute("INSERT INTO shelf VALUES ("

 + theShelf + ",1)");

 }

 else {

 con.createStatement()

 .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

 +theShelf);

 }

 try {

 con.createStatement()

 .execute("INSERT INTO book VALUES (“

 + currBook.getId() + “,"

 + theShelf +")");

 }

 catch (SQLException e) {

 success = false;

 };

 if (success) {

 con.commit();

 addedBooks.add(currBook.getId());

 }

 else {

 con.rollback();

 }

 i++;

 }

 return addedBooks;

}

theShelf = x0 ∧ success = true ∧ shelves ≠ ∅ ∧ #Shelf > 1

Path condition

Symbolic DB

id is primary key

numberOfBooks > 0

id numberOfBooks

x0 n0’

y0 n1

U

Shelf

y0 ≠ x0 ∧ n0 > 0 ∧ n1 > 0 ∧ n0' = n0 + 1

Relational SAT

Standard SMT

Remarks

• Testing and test generation of db applications based on
symbolic execution needs to handle database constraints
in combination with path constraints

• Solely using standard SMT prevents us from exploiting
advances in relational constraint solving

• Solving techniques that combine standard SMT with
relational constraint solving can have an important impact
in db application testing

