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Software applications and databases

• Most software applications need to 
persist information, typically via the 
interaction with databases


• Testing some methods within such 
applications thus requires producing 
database states, besides the direct 
inputs of the method under test


• In particular, exercising certain 
program paths may depend on 
specific data stored in the 
database 

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

    if (con == null || newBooks == null) throw new IllegalArgumentException();

    int i = 0;

    List<Integer> addedBooks = new ArrayList<Integer>();

    while (i < newBooks.size()) {

        Book currBook = newBooks.get(i);

        int theShelf = shelfForBook(currBook.getId());

        boolean success = true;

        ResultSet shelves = con.createStatement()

                               .executeQuery("SELECT id FROM shelf WHERE id=" 

                                             + theShelf);

        if (!shelves.next()) {

            con.createStatement().execute("INSERT INTO shelf VALUES (" 

                                          + theShelf + ",1)");

        }

        else {

            con.createStatement()

               .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

                         +theShelf);

        }

        try {

            con.createStatement()

               .execute("INSERT INTO book VALUES (“

                         + currBook.getId() + “," 

                         + theShelf +")");

        }

        catch (SQLException e) {

            success = false;

        };

        if (success) {

            con.commit();

            addedBooks.add(currBook.getId());

        }

        else {

            con.rollback();

        }

        i++;

    }

    return addedBooks;

}



Software applications and databases

• Most software applications need to 
persist information, typically via the 
interaction with databases


• Testing some methods within such 
applications thus requires producing 
database states, besides the direct 
inputs of the method under test


• In particular, exercising certain 
program paths may depend on 
specific data stored in the 
database 

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

    if (con == null || newBooks == null) throw new IllegalArgumentException();

    int i = 0;

    List<Integer> addedBooks = new ArrayList<Integer>();

    while (i < newBooks.size()) {

        Book currBook = newBooks.get(i);

        int theShelf = shelfForBook(currBook.getId());

        boolean success = true;

        ResultSet shelves = con.createStatement()

                               .executeQuery("SELECT id FROM shelf WHERE id=" 

                                             + theShelf);

        if (!shelves.next()) {

            con.createStatement().execute("INSERT INTO shelf VALUES (" 

                                          + theShelf + ",1)");

        }

        else {

            con.createStatement()

               .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

                         +theShelf);

        }

        try {

            con.createStatement()

               .execute("INSERT INTO book VALUES (“

                         + currBook.getId() + “," 

                         + theShelf +")");

        }

        catch (SQLException e) {

            success = false;

        };

        if (success) {

            con.commit();

            addedBooks.add(currBook.getId());

        }

        else {

            con.rollback();

        }

        i++;

    }

    return addedBooks;

}



Software applications and databases

• Most software applications need to 
persist information, typically via the 
interaction with databases


• Testing some methods within such 
applications thus requires producing 
database states, besides the direct 
inputs of the method under test


• In particular, exercising certain 
program paths may depend on 
specific data stored in the 
database 

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

    if (con == null || newBooks == null) throw new IllegalArgumentException();

    int i = 0;

    List<Integer> addedBooks = new ArrayList<Integer>();

    while (i < newBooks.size()) {

        Book currBook = newBooks.get(i);

        int theShelf = shelfForBook(currBook.getId());

        boolean success = true;

        ResultSet shelves = con.createStatement()

                               .executeQuery("SELECT id FROM shelf WHERE id=" 

                                             + theShelf);

        if (!shelves.next()) {

            con.createStatement().execute("INSERT INTO shelf VALUES (" 

                                          + theShelf + ",1)");

        }

        else {

            con.createStatement()

               .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

                         +theShelf);

        }

        try {

            con.createStatement()

               .execute("INSERT INTO book VALUES (“

                         + currBook.getId() + “," 

                         + theShelf +")");

        }

        catch (SQLException e) {

            success = false;

        };

        if (success) {

            con.commit();

            addedBooks.add(currBook.getId());

        }

        else {

            con.rollback();

        }

        i++;

    }

    return addedBooks;

}



Software applications and databases

• Most software applications need to 
persist information, typically via the 
interaction with databases


• Testing some methods within such 
applications thus requires producing 
database states, besides the direct 
inputs of the method under test


• In particular, exercising certain 
program paths may depend on 
specific data stored in the 
database 

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

    if (con == null || newBooks == null) throw new IllegalArgumentException();

    int i = 0;

    List<Integer> addedBooks = new ArrayList<Integer>();

    while (i < newBooks.size()) {

        Book currBook = newBooks.get(i);

        int theShelf = shelfForBook(currBook.getId());

        boolean success = true;

        ResultSet shelves = con.createStatement()

                               .executeQuery("SELECT id FROM shelf WHERE id=" 

                                             + theShelf);

        if (!shelves.next()) {

            con.createStatement().execute("INSERT INTO shelf VALUES (" 

                                          + theShelf + ",1)");

        }

        else {

            con.createStatement()

               .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

                         +theShelf);

        }

        try {

            con.createStatement()

               .execute("INSERT INTO book VALUES (“

                         + currBook.getId() + “," 

                         + theShelf +")");

        }

        catch (SQLException e) {

            success = false;

        };

        if (success) {

            con.commit();

            addedBooks.add(currBook.getId());

        }

        else {

            con.rollback();

        }

        i++;

    }

    return addedBooks;

}

Symbolic execution can help us produce inputs, including database 
contents, to exercise such paths



Related (previous) Work

• Symbolic execution for DB applications (M. Marcozzi et al.)


• Implemented for Java + JDBC


• Ad hoc SE engine


• Z3 as backend solver


• Concolic execution for DB applications (T. Xie et al.)


• Implemented for C# + .NET SqlClient


• Realized as a PEX extension


• Z3 as backend solver

M. Marcozzi, W. Vanhoof, J.-L. Hainaut: Towards testing of full-scale SQL applications using relational symbolic execution. CSTVA 2014

M. Marcozzi, W. Vanhoof, J.-L. Hainaut: Relational symbolic execution of SQL code for unit testing of database programs. Sci. Comput. Program. (2015)

K. Pan, X. Wu, T. Xie: Program-input generation for testing database applications using existing database states. Autom. Softw. Eng. 22(4) (2015)

K. Pan, X. Wu, T. Xie: Guided test generation for database applications via synthesized database interactions. ACM Trans. Softw. Eng. Methodol. (2014)
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• Previous works use Z3 for “relational” constraint solving

• Essentially, each relation  is encoded 
as uninterpreted function , 
and relational constraints as constraints on these functions

R ⊆ T1 × T2 × … × Tk
fR : T1 × T2 × … × Tk → Bool

• But relational constraint solving in an area on its own

• Are we missing relational constraint solving advances by 
using “non-relational” SMT?
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State-of-the-art in Relational 
Constraint Solving

• Bounded relational constraint solving

• Alloy/KodKod

• Based on SAT, implements many optimizations

• Relational constraint solving based on set theory 

• {log}

• Complete for a theory of finite relations

• Relational constraint solving based on an algebraic 
theory of finite relations

• Implemented on CVC4

• Complete for a language over many sorted 
finite relations (including transitive closure)



“Non-relational” SMT vs Relational 
Constraint Solving

• No comprehensive comparison of existing approaches


• Some studies compare some specific techniques


• e.g., Alloy vs non-relational SMT, Alloy vs a relational 
decision procedure, …


• Some studies are outdated, and use restricted 
datasets, among other issues



Database application constraints:  
“Non-relational” SMT vs  
Relational Constraint Solving
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M. Marcozzi, W. Vanhoof, J.-L. Hainaut: Relational symbolic execution of SQL code for unit testing of database programs. Sci. Comput. Program. (2015)



Database application constraints:  
“Non-relational” SMT vs  
Relational Constraint Solving

(*) log scale

Our revisited study
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Opportunities with relational constraint 
solving (in the context of DB Applications)

• Efficiency

• SAT bounded relational solving is more efficient for 
satisfiable constraints (*)

• Effectiveness

• E.g., {log} generates finite representation of all models of a 
relational formula

• Kind of “symbolic” interpretation of a formula

• Room for combined techniques for relational constraint solving

(*) Baoluo Meng, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett: Relational Constraint Solving in SMT. CADE 2017




Interaction between SMT and 
SAT in DB constraint solving

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

    if (con == null || newBooks == null) throw new IllegalArgumentException();

    int i = 0;

    List<Integer> addedBooks = new ArrayList<Integer>();

    while (i < newBooks.size()) {

        Book currBook = newBooks.get(i);

        int theShelf = shelfForBook(currBook.getId());

        boolean success = true;

        ResultSet shelves = con.createStatement()

                               .executeQuery("SELECT id FROM shelf WHERE id=" 

                                             + theShelf);

        if (!shelves.next()) {

            con.createStatement().execute("INSERT INTO shelf VALUES (" 

                                          + theShelf + ",1)");

        }

        else {

            con.createStatement()

               .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

                         +theShelf);

        }

        try {

            con.createStatement()

               .execute("INSERT INTO book VALUES (“

                         + currBook.getId() + “," 

                         + theShelf +")");

        }

        catch (SQLException e) {

            success = false;

        };

        if (success) {

            con.commit();

            addedBooks.add(currBook.getId());

        }

        else {

            con.rollback();

        }

        i++;

    }

    return addedBooks;

}

theShelf = x0 ∧ success = true ∧ shelves ≠ ∅ ∧ #Shelf > 1

Shelf

id numberOfBooks

Path condition

Symbolic DB

id is primary key

numberOfBooks > 0

Relational SAT

Standard SMT



Interaction between SMT and 
SAT in DB constraint solving

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

    if (con == null || newBooks == null) throw new IllegalArgumentException();

    int i = 0;

    List<Integer> addedBooks = new ArrayList<Integer>();

    while (i < newBooks.size()) {

        Book currBook = newBooks.get(i);

        int theShelf = shelfForBook(currBook.getId());

        boolean success = true;

        ResultSet shelves = con.createStatement()

                               .executeQuery("SELECT id FROM shelf WHERE id=" 

                                             + theShelf);

        if (!shelves.next()) {

            con.createStatement().execute("INSERT INTO shelf VALUES (" 

                                          + theShelf + ",1)");

        }

        else {

            con.createStatement()

               .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

                         +theShelf);

        }

        try {

            con.createStatement()

               .execute("INSERT INTO book VALUES (“

                         + currBook.getId() + “," 

                         + theShelf +")");

        }

        catch (SQLException e) {

            success = false;

        };

        if (success) {

            con.commit();

            addedBooks.add(currBook.getId());

        }

        else {

            con.rollback();

        }

        i++;

    }

    return addedBooks;

}

theShelf = x0 ∧ success = true ∧ shelves ≠ ∅ ∧ #Shelf > 1

Path condition

Symbolic DB

id is primary key

numberOfBooks > 0

id numberOfBooks

x0 n0

y0 n1

U

Shelf

Relational SAT

Standard SMT



Interaction between SMT and 
SAT in DB constraint solving

public List<Integer> addBooks (Connection con, List<Book> newBooks) {

    if (con == null || newBooks == null) throw new IllegalArgumentException();

    int i = 0;

    List<Integer> addedBooks = new ArrayList<Integer>();

    while (i < newBooks.size()) {

        Book currBook = newBooks.get(i);

        int theShelf = shelfForBook(currBook.getId());

        boolean success = true;

        ResultSet shelves = con.createStatement()

                               .executeQuery("SELECT id FROM shelf WHERE id=" 

                                             + theShelf);

        if (!shelves.next()) {

            con.createStatement().execute("INSERT INTO shelf VALUES (" 

                                          + theShelf + ",1)");

        }

        else {

            con.createStatement()

               .execute("UPDATE shelf SET numberOfBooks=numberOfBooks+1 WHERE id =“

                         +theShelf);

        }

        try {

            con.createStatement()

               .execute("INSERT INTO book VALUES (“

                         + currBook.getId() + “," 

                         + theShelf +")");

        }

        catch (SQLException e) {

            success = false;

        };

        if (success) {

            con.commit();

            addedBooks.add(currBook.getId());

        }

        else {

            con.rollback();

        }

        i++;

    }

    return addedBooks;

}

theShelf = x0 ∧ success = true ∧ shelves ≠ ∅ ∧ #Shelf > 1

Path condition

Symbolic DB

id is primary key

numberOfBooks > 0

id numberOfBooks

x0 n0

y0 n1

U

Shelf

y0 ≠ x0 ∧ n0 > 0 ∧ n1 > 0

Relational SAT

Standard SMT



Interaction between SMT and 
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Remarks

• Testing and test generation of db applications based on 
symbolic execution needs to handle database constraints 
in combination with path constraints


• Solely using standard SMT prevents us from exploiting 
advances in relational constraint solving


• Solving techniques that combine standard SMT with 
relational constraint solving can have an important impact 
in db application testing


