
Software Complexity, Path
Complexity, and Branch Selectivity

Tevfik Bultan
Verification Lab (VLab), Computer Science Department

University of California, Santa Barbara

VLab Collaborators

2

Lucas Bang, Harvey Mudd

Abdulbaki Aydin, Meta

Seemanta Saha, Intel

William Eiers
Stevens Institute of Technology

Tegan Brennan
Stevens Institute of Technology

Laboni Sarker, UCSB

Mara Downing, UCSB

MD Shafiuzzaman, UCSB

Chaofan Shou, UC Berkeley

Ganesh Sankaran, Amazon

Albert Li, Oracle

Outline

● Motivation
● Software complexity
● Path complexity
● Branch selectivity
● Future directions

3

Software engineering is 56 years old!

Purpose: to look for a
solution to software crisis

–50 distinguished computer
scientists, programmers and
industry leaders got together
to look for a solution to the
difficulties in building large
software systems

–Considered to be the birth of
“software engineering” as a
research area

• In 1968 a seminal NATO Conference
was held in Garmisch, Germany

4

Margaret Hamilton
Director of Software
Development for the
NASA’s Apollo
mission

Attendees of the
1968 Garmisch
conference

What was software crisis?

Large software systems often:

● Do not provide the desired functionality
● Take too long to build
● Cost too much to build
● Require too much resources (time, space) to run
● Cannot evolve to meet changing needs

Software engineering as a remedy: a systematic, disciplined,
quantifiable approach to the production and maintenance of software.

5

Software’s chronic crisis
• A quarter century (1994) after the Garmisch conference, an article

in Scientific American declared:

6

Software’s chronic crisis
• Another quarter century later:

• This is a photo of the navigation system of my car

– It crashes and reboots while I am driving!

7

Software’s chronic crisis
We are still looking for a:
● systematic, disciplined, quantifiable approach to the production

and maintenance of software

which ensures:
● safety, dependability, security, reliability, availability, usability,

efficiency, scalability, and maintainability

of software systems.

8

Outline

● Motivation
● Software complexity
● Path complexity
● Branch selectivity
● Future directions

9

Software Complexity

[Kearney et al. 1986]

“In recent years much attention has been directed toward reducing
software cost. To this end, researchers have attempted to find
relationships between the characteristics of programs and the
difficulty of performing programming tasks. The objective has been
to develop measures of software complexity that can be used for
cost projection, manpower allocation, and program and
programmer evaluation.”

10

● “Software complexity measurement” Joseph P. Kearney, Robert L. Sedlmeyer, William B. Thompson,
Michael A. Gray, Michael A. Adler. Communications of the ACM, Volume 29, Issue 11, pp 1044–1050, 1986

Software Complexity Measurement

11

Software

Complexity
Measurement

Software Complexity: What can we do with it?

Can we use software complexity measurements to predict/assess
things like:

● bug-proneness
● defects
● testing effort
● verification effort
● program comprehension effort
● maintenance effort
● …

12Note: This is not algorithmic complexity analysis

Software Complexity: Cyclomatic (McCabe) Complexity

13
● Wikipedia, “Cyclomatic Complexity”
● Thomas J. McCabe: “A Complexity Measure.” IEEE Trans. Software Eng. 2(4): 308-320 (1976)

McCabe’s 2008 presentation to the USA
Department of Homeland Security:

Cyclomatic Complexity & Reliability Risk:
● 1 – 10 Simple procedure, little risk
● 11- 20 More Complex, moderate risk
● 21 – 50 Complex , high risk
● >50 Untestable, VERY HIGH RISK

Cyclomatic complexity:

Software Complexity: Halstead Complexity Measures

14● Wikipedia, “Halstead complexity measures”
● M. H. Halstead, “Elements of Software Science.” New York: Elsevier North-Holland, 1977.

Cyclomatic (McCabe) complexity & Halstead complexity

● These complexity measures have been around ~50 years

● They seem oversimplified and coarse

Can we do better?

15

Outline

● Motivation
● Software complexity
● Path complexity
● Branch selectivity
● Future directions

16

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0

n 1

count(n) 0

path(n) 0

Control Flow Graph (CFG)

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1

n 1 2

count(n) 0 1

path(n) 0 1

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1

n 1 2 3

count(n) 0 1 0

path(n) 0 1 1

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1

n 1 2 3 4

count(n) 0 1 0 0

path(n) 0 1 1 1

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1
● paths(up to depth 5) = 3

n 1 2 3 4 5

count(n) 0 1 0 0 2

path(n) 0 1 1 1 3

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1
● paths(up to depth 5) = 3

n 1 2 3 4 5

count(n) 0 1 0 0 2

path(n) 0 1 1 1 3

Path Complexity

● Upper bound on number of paths from start to exit up to
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1
● paths(up to depth 5) = 3

n 1 2 3 4 5 6 7 8 …

count(n) 0 1 0 0 2 0 0 4 …

path(n) 0 1 1 1 3 3 3 7 …

Path Complexity

25● Lucas Bang, Abdulbaki Aydin, Tevfik Bultan: Automatically computing path complexity of
programs. ESEC/SIGSOFT FSE 2015: 61-72

?

Can you count the paths Will Hunting?

26

Path Counting

27

Control Flow Graph (CFG)

Path Counting via Matrix Exponentiation

28

T: adjacency
matrix for the
automaton

(i,j): number of
edges from i to j

Counting Paths via Generating Functions

29

Counting Paths via Generating Functions

30

Good job Will Hunting!

31

Path Complexity

32● Lucas Bang, Abdulbaki Aydin, Tevfik Bultan: Automatically computing path complexity of
programs. ESEC/SIGSOFT FSE 2015: 61-72

Path Complexity

33● Lucas Bang, Abdulbaki Aydin, Tevfik Bultan: Automatically computing path complexity of
programs. ESEC/SIGSOFT FSE 2015: 61-72

?

Path Complexity & Asymptotic Path Complexity

● A closed-form solution for the path counting function can be
computed from the generating function

● It involves
○ finding the roots of the denominator of the generating function
○ taking linearly independent combination of exponentiated

roots
○ solving for the coefficients

Asymptotic path complexity:

● extract the highest order term using asymptotic analysis 34

Examples from Java SDK

35

Examples from Java SDK

36

Examples from Java SDK

37

Comparison with other Complexity Measures

Cyclomatic Complexity: corresponds to the maximum number of
linearly independent paths in the CFG

NPATH Complexity: the number of acyclic paths in the CFG

Path Complexity

38

Comparison with other Complexity Measures

39

Comparison with other Complexity Measures

40

Asymptotic Path Complexity

41

Asymptotic path complexity of methods in Java SDK and Apache
libraries

Path Complexity for Recursive Functions

Path complexity analysis we have discussed so far is intra-procedural

It only counts the paths within one method

How about procedure calls, recursion?

Can we count paths in recursive functions?

42Eli Pregerson, Shaheen Cullen-Baratloo, David Chen, Duy Lam, Max Szostak, Lucas Bang: “Formalizing
Path Explosion for Recursive Functions via Asymptotic Path Complexity.” FormaliSE 2023: 76-85

Path Complexity for Recursive Functions

● Control flow graphs support a regular language of paths (DFA)
○ Do not match function call to function return

● Paths in recursive functions are not regular
○ Need a stack to match function calls and returns (PDA)

● Context free grammars work

Path Complexity for Recursive Functions

T → 0A
A → 1B
B → 2C
C → 3D|4E
D → 7
E → T5F
F → T6G
G → 7

Program
Inter-procedural
control flow graph

Context
free grammar

Path Complexity for Recursive Functions

T = zA
A = zB
B = zC
C = zD+zE
D = z
E = zTF
F = zTG
G = z

Eliminate
variables to get
the generating
function
z5 + z7T2 - T = 0

Asymptotic Path
Complexity
4n/12 = 1.12n

T → 0A
A → 1B
B → 2C
C → 3D|4E
D → 7
E → T5F
F → T6G
G → 7

Context
free grammar

Replace terminal
characters with z

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

Gabriel Bessler, Josh Cordova, Shaheen Cullen-Baratloo, Sofiane Dissem, Emily Lu, Sofia Devin, Ibrahim
Abughararh, Lucas Bang: Metrinome: Path Complexity Predicts Symbolic Execution Path Explosion. ICSE
(Companion Volume) 2021: 29-32

Symbolic Execution ?

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

Symbolic Execution ?

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

Symbolic Execution

Asymptotic
Path Complexity
O(f (depth))

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

Upper Bound

?
KLEE’s path count correlates with path complexity

Code Comprehension: An fMRI Study

[Peitek, Norman, et al.]

● Compared existing complexity metrics against fMRI data
○ Participants have to look at a function and figure out what it

does
○ Collect brain (de)activation data and human-based difficulty

ratings
○ See how they correlate with existing metrics focused on code

properties
■ LOC, McCabe’s, Halstead, Dependency Degree

Peitek, Norman, et al. “Program Comprehension and Code Complexity Metrics: An fMRI Study” ICSE, 2021

Results

● Overall, all analyzed metrics, except McCabe, are useful
predictors of code comprehension difficulty

● Each metric performed better on different Brodmann Areas and
code-comprehension indicators

Asymptotic
Path Complexity
O(f (depth))

Asymptotic Path Complexity Correlates with Code Comprehension

Kendall Rank
Correlation

● Participant-reported
subjective complexity

● Code Comprehension
time

● Brain activation in
areas responsible for
semantic processing

ode

Sofiane Dissem, Eli Pregerson, Adi Bhargava, Josh Cordova, Lucas Bang: Path Complexity Correlates

with Source Code Comprehension Effort Indicators. ICPC 2023: 266-274

Kendall Rank Correlations by Comprehension Effort
Indicator

Asymptotic path complexity (APC) has a higher correlation than any
other metric for several code comprehension difficulty indicators

Software complexity, verifiability, understandability

[Bessler et al.] Path complexity → verifiability via symbolic execution

[Dissem et al.] Path complexity → code understandability

[Feldman et al.] Code verifiability → code understandability

“Our empirical study on the correlation between tool-based verifiability
and human-based metrics of code understanding suggests there is a
connection between whether a tool can verify a code snippet and how
easy it is for a human to understand”

54

Kobi Feldman, Martin Kellogg, Oscar Chaparro: “On the Relationship between Code Verifiability and
Understandability.” ESEC/SIGSOFT FSE 2023: 211-223

Software complexity, verifiability, understandability

55

software
complexity

software
verifiability

software
understandability

[Bessler et al.] [Dissem et al.]

[Feldman et al.]

Outline

● Motivation
● Software complexity
● Path complexity
● Branch selectivity
● Future directions

56

What about infeasible paths?

Just looking at paths in the control flow graph (like in path complexity)
does not give us the full picture about a program’s behavior

● Not all paths are feasible

For some paths, it may be easy to check that they are feasible

● Randomly pick input values and see which paths are executed

But, for some paths it may not be easy to find a value that triggers the
path

57

1 public class Main {
2 public static void main (String [] args) {
3 int arg = Verifier.nondetInt ();
4 if (arg < 0)
5 return ;
6 int x = arg / 5;
7 int y = arg / 5;
8 Main inst = new Main ();
9 inst.test(x, y);
10 }
11 public void test (int x, int z) {
12 System.out.println("Testing ExSymExe7");
13 int y = 3;
14 z = x - y - 4;
15 if (z != 0)
16 System.out.println ("branch FOO1");
17 else {
18 System.out.println ("branch FOO2");
19 assert false;
20 }
21 if (y != 0)
22 System.out.println("branch BOO1");
23 else
24 System.out.println("branch BOO2");
25 }
26 }

What is the likelihood of reaching
the assertion statement if we run a

random testing tool?

Is the assertion statement hard to
reach for a random testing tool?

Identify Hard to Reach Statements

Target
Statement

Hard to Reach
Statement

Program + Target Statement

Easy to Reach
Statement

Probabilistic Reachability Analysis

Target
Statement

Hard to Reach
Statement

Program + Target Statement

Easy to Reach
Statement

Probabilistic Symbolic
Execution

Statistical Symbolic
Execution

Symbolic Execution based Techniques: Issues

➢ Exponential increase in the number of program
paths

➢ Linear increase in path constraint size ⇒ exponential
increase in cost of symbolic execution

➢ Complexity increases further with model counting

PReach

Path constraints Branch constraints

Exponential
analysis cost

Polynomial analysis
cost

Trades off accuracy for scalability

PReach

Discrete Time Markov Chain Model

Probabilistic Model Checking

Reachability Probability

< Threshold Hard to Reach
Statement

Program + Target Statement

Easy to Reach
Statement

Seemanta Saha, Mara Downing, Tegan Brennan, Tevfik Bultan: "PREACH: A Heuristic for Probabilistic
Reachability to Identify Hard to Reach Statements.” ICSE 2022: 1706-1717

arg < 0

z ≠ 0

y != 0

1 public class Main {
2 public static void main (String [] args) {
3 int arg = Verifier.nondetInt ();
4 if (arg < 0)
5 return ;
6 int x = arg / 5;
7 int y = arg / 5;
8 Main inst = new Main ();
9 inst.test(x, y);
10 }
11 public void test (int x, int z) {
12 System.out.println("Testing ExSymExe7");
13 int y = 3;
14 z = x - y - 4;
15 if (z != 0)
16 System.out.println ("branch FOO1");
17 else {
18 System.out.println ("branch FOO2");
19 assert false;
20 }
21 if (y != 0)
22 System.out.println("branch BOO1");
23 else
24 System.out.println("branch BOO2");
25 }
26 }

Control
Flow Graph

0.5

1.0

0.999…

1.0

1.0 1.0

0.5

2.32e-10

Control
Flow
Graph

Discrete
Time

Markov
Chain

arg < 0

z ≠ 0

y != 0

Branch Selectivity

1 public int test (int input) {
2 if (input == 0)
3 assert false;
4 else if (input > 0)
5 return 1;
6 else
7 return -1;
8 }

32-bit signed integer, 232 possible values

Selectivity of this branch is 1/232

Model Counting
Branch Condition (Tb)

Branch Constraint

input == 0

(declare-fun input() Int)
(assert (= input 0))
(check-sat)

Branch Model
Count (|Tb|)= 1 Branch Count (|Tb|) = 1

Domain Size (|Db|) = 232

Selectivity, S(b) = 1/232

Model Counting

The classic (Boolean) SAT problem: is formula ! satisfiable?

! is satisfied by setting

● A satisfying assignment is called a model for !

67

The model counting problem:

how many models are there for !?

ABC

formula

! bound k

counting
function

#!

of models within bound k for
which ! evaluates to true

INPUT OUTPUT

ABC: Model counting constraint solver
Abdulbaki Aydin, Lucas Bang, Tevfik Bultan: “Automata-Based Model Counting for String Constraints.”
CAV (1) 2015: 255-272
Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov, Tevfik Bultan, Fang Yu:
“Parameterized model counting for string and numeric constraints.” ESEC/SIGSOFT FSE 2018: 400-410

ABC in a nutshell

Automata-based constraint solving

Basic idea:

Automata can
represent
sets of strings

Represent satisfying
solutions for constraints as
strings

Construct an
automaton that accepts
satisfying solutions for
a given constraint

Given some bound,
count the number of
paths in a graph

This reduces the
model counting
problem to path
counting

Again, path counting!

70

Automata-based model counting

71

Automata can represent sets of
strings

● Represent satisfying solutions for
constraints as strings

This reduces the model counting
problem to path counting

● Given some bound, count
the number of paths in a
graph¬match(v, (ab)*)

0.5

1.0
0.5

0.999…

1.0

1.0 1.0

0.5

2.32e-10

dtmc
module test
s : [0..7] init 0;
[] s = 0 -> 0.5 : (s' = 1) + 0.5 :
(s' = 2);
[] s = 2 -> 0.99999999976 : (s' = 3)
+ 2.32e-10 : (s' = 4);
[] s = 3 -> 1.0 : (s' = 5);
[] s = 4 -> 1.0 : (s' = 5);
[] s = 5 -> 1.0 : (s' = 6);
[] s = 6 -> 1.0 : (s' = 7);
[] s = 7 -> 1.0 : (s' = 1);
[] s = 1 -> 1.0 : (s' = 1);
endmodule

DTMC Model in PRISM

P=? [F s = 4]

PCTL Query

What is the
probability that the

target node is
reached eventually?

PReach: Tools and Benchmarks

● Branch selectivity → PReach

● Refined branch selectivity

○ using interval analysis (box domain) → PReach-I

○ using relational analysis (polyhedra domain) → PReach-P

Assessment on SV-Comp Benchmarks

Accuracy: 95.8

Precision: 95.1

Recall: 90.2

How successful is Preach in identifying hard to reach statements?

PReach vs. PSE and SSE:

PReach vs. PSE and SSE:
PReach is orders of magnitude faster

Can we use branch selectivity to improve verifiability?

● We showed that branch selectivity can help us identify hard to
reach statements

● Can we use branch selectivity and probabilistic analysis to
improve performance of fuzzing tools?

77

78

Rare-Path Guided Fuzzing

Technique to
Identify Rare Paths

Rare Path-Guided
Concolic ExecutionRare

Paths

Rare Path
triggering

inputs

Fuzzer Coverage

Fuzzer More
coverage?

Random Initial
Seed

Rare-Path
Guided Seed

Set

Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, Tevfik
Bultan: “Rare Path Guided Fuzzing.” ISSTA 2023: 1295-1306

79

Identify Rare Program Paths

Rare Path : A program path which is unlikely to be exercised if we
run fuzzer with a uniformly chosen random input.

To identify rare paths:
• Use Branch Selectivity
• Same approach we used earlier for identifying hard to reach

statements

80

Heuristic: Identify Rare Program Paths

Probabilistic Control Flow Graph

Estimated Path Probability

< Threshold

Rare Paths

Program

1 public int test (int input) {
2 if (input == 0)
3 assert false;
4 else if (input > 0)
5 return 1;
6 else
7 return -1;
8 }

32-bit signed integer, 232 possible values

Selectivity of
this branch
is 1/232

Branch Selectivity

Rare-Path Guided Fuzzing: Motivation

char *CUR;
#define CMP3(s, c1, c2, c3) \
(((unsigned char *) s)[0] == c1 && \
((unsigned char *) s)[1] == c2 && \
((unsigned char *) s)[2] == c3)

int main(int argc, char **argv) {
CUR = argv[1];
if (CMP3(CUR, 'D', 'O', 'C')) {
CUR = CUR + 3;
parse_cmt();
if(parse_att())
/* go deeper */

}
return 0;

}
void parse_cmt() {
if(*CUR == '<' || CUR == '>')
CUR++;

}
int parse_att() {
if (CMP3(CUR, 'A', 'T', 'T'))
return 1;

return 0;
}

81

DOC

ATT

SKIPS ‘<’ or ‘>’

Inputs:
DOCATT

DOC<ATT
DOC>ATT

Fuzzer with random seed cannot
generate sequences “DOC” and

“ATT” within 1 hour

Our rare path analysis can
generate seed “DOC<ATT” within

1 minute and fuzzer can explore
deeper functionalities immediately

Heuristic: Identify Rare Program Paths

char *CUR;
#define CMP3(s, c1, c2, c3) \
(((unsigned char *) s)[0] == c1 && \
((unsigned char *) s)[1] == c2 && \
((unsigned char *) s)[2] == c3)

int main(int argc, char **argv) {
CUR = argv[1];
if (CMP3(CUR, 'D', 'O', 'C')) {
CUR = CUR + 3;
parse_cmt();
if(parse_att())
/* go deeper */

}
return 0;

}
void parse_cmt() {
if(*CUR == '<' || CUR == '>')
CUR++;

}
int parse_att() {
if (CMP3(CUR, 'A', 'T', 'T'))
return 1;

return 0;
}

Control
Flow Graph

82

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

Probabilistic CFG

83

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

1.0

0.004

1.0

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.996

0.996

0.996

0.996

0.996

0.996

0.996

1.0

1.0
1.0

1.0

1.0

1.0
1.0 0.5

0.5 1.0 1.0
0.996

Branch
Selectivity

Path Probability Estimation

84

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

1.0

0.004

1.0

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.996

0.996

0.996

0.996

0.996

0.996

0.996

1.0

1.0
1.0

1.0

1.0

1.0
1.0

0.5
0.5

1.0 1.0
0.996

Path Probability

1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 8.16 x 10-18

Multiply edge probabilities to
compute path probability

Nodes taken by the path

Path Probability Estimation

85

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

1.0

0.004

1.0

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.996

0.996

0.996

0.996

0.996

0.996

0.996

1.0

1.0
1.0

1.0

1.0

1.0
1.0 0.5

0.5 1.0 1.0
0.996

Path Probability

1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 8.16 x 10-18

1->2->3->4->10->11 1.59 x 10-5

Nodes taken by the path

Path Probability Estimation

86

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

1.0

0.004

1.0

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.996

0.996

0.996

0.996

0.996

0.996

0.996

1.0

1.0
1.0

1.0

1.0

1.0
1.0 0.5

0.5 1.0 1.0
0.996

Path Probability

1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 8.16 x 10-18

1->2->3->4->10->11 1.59 x 10-5

1->2->3->4->5->12->13->17->6->18->21->22->8->9->11 1.27 x 10-10

Nodes taken by the path

Rare Path

87

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

1.0

0.004

1.0

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.996

0.996

0.996

0.996

0.996

0.996

0.996

1.0

1.0
1.0

1.0

1.0

1.0
1.0 0.5

0.5 1.0 1.0
0.996

Path Probability

1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 8.16 x 10-18

Estimated path probability for a path less
than a threshold

Nodes taken by the rare path

Path-Guided Concolic Execution

88

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22

1.0

0.004

1.0

0.004

0.004

0.004

0.004

0.004

0.004

0.004

0.996

0.996

0.996

0.996

0.996

0.996

0.996

1.0

1.0
1.0

1.0

1.0

1.0
1.0 0.5

0.5 1.0 1.0
0.996

Nodes taken by the rare path

1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24Rare Path

DOC<ATT

C
onstraint
Solving

89

Experimental Setup and Benchmarks

➢We ran a fuzzer with a random seed for 24 hours
➢We used maximum of 25% time for rare seed generation (6 hours) and

ran the fuzzer for the remaining 75% time (18 hours) for fuzzing

Benchmarks Lines of Code

tinyC 190

inih 243

calculator 1312

cJSON 3845

libxslt 33371

libxml2 186116

SV-Comp (seq-mthreded) 1016 (avg.)

90

Experimental Evaluation

Fuzzer Coverage

Fuzzer More
coverage?

Random Initial
Seed

Rare-Path
Guided Seed

Set

91

Coverage Improvement

Coverage Improvement over AFL++
(Higher is better)

Coverage Improvement over FairFuzz
(Higher is better)

% coverage
improvement

6.47% 0.00% 1.33% 4.19% 18.86% 20.35% 8.47% 0.94% 0.00% 0.51% 4.14% 31.86% 18.29% 4.7%

92

Coverage Improvement

Coverage Improvement over AFL++ and FairFuzz
(Higher is better)

libxml2

Outline

● Motivation
● Software complexity
● Path complexity
● Branch selectivity
● Conclusions and Future directions

93

Conclusions

Recent results indicate that
● Path complexity can be computed in a scalable manner
● There are effective heuristics for probabilistic reachability analysis

and rare path analysis
● Software complexity, verifiability, understandability are related
● Refined software complexity analysis can be used to predict

performance of different types of testing and verification
techniques

94

Future directions

● Developing a complexity metric that combines path complexity &
branch selectivity

● Developing heuristics/guidance for verification/testing tools using
path complexity & branch selectivity

● Using ML techniques to assess if path complexity and branch
selectivity are useful features

95

THE END

