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Software engineering is 56 years old!

Purpose: to look for a 
solution to software crisis

–50 distinguished computer 
scientists, programmers and 
industry leaders got together 
to look for a solution to the 
difficulties in building large 
software systems

–Considered to be the birth of 
“software engineering” as a 
research area

• In 1968 a seminal NATO Conference 
was held in Garmisch, Germany
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Margaret Hamilton
Director of Software 
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What was software crisis?

Large software systems often:

● Do not provide the desired functionality
● Take too long to build
● Cost too much to build
● Require too much resources (time, space) to run
● Cannot evolve to meet changing needs

Software engineering as a remedy: a systematic, disciplined, 
quantifiable approach to the production and maintenance of software.

5



Software’s chronic crisis
• A quarter century (1994) after the Garmisch conference, an article 

in Scientific American declared:

6



Software’s chronic crisis
• Another quarter century later:

• This is a photo of the navigation system of my car

– It crashes and reboots while I am driving!

7



Software’s chronic crisis
We are still looking for a: 
● systematic, disciplined, quantifiable approach to the production 

and maintenance of software 

which ensures:
● safety, dependability, security, reliability, availability, usability, 

efficiency, scalability, and maintainability

of software systems.

8
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Software Complexity

[Kearney et al. 1986]

“In recent years much attention has been directed toward reducing 
software cost. To this end, researchers have attempted to find 
relationships between the characteristics of programs and the 
difficulty of performing programming tasks. The objective has been 
to develop measures of software complexity that can be used for 
cost projection, manpower allocation, and program and 
programmer evaluation.”

10

● “Software complexity measurement” Joseph P. Kearney, Robert L. Sedlmeyer, William B. Thompson, 
Michael A. Gray, Michael A. Adler. Communications of the ACM, Volume 29, Issue 11, pp 1044–1050, 1986



Software Complexity Measurement

11

Software

Complexity
Measurement



Software Complexity: What can we do with it?

Can we use software complexity measurements to predict/assess 
things like:

● bug-proneness
● defects 
● testing effort
● verification effort 
● program comprehension effort
● maintenance effort
● …

12Note: This is not algorithmic complexity analysis



Software Complexity: Cyclomatic (McCabe) Complexity

13
● Wikipedia, “Cyclomatic Complexity”
● Thomas J. McCabe: “A Complexity Measure.” IEEE Trans. Software Eng. 2(4): 308-320 (1976)

McCabe’s 2008 presentation to the USA 
Department of Homeland Security:

Cyclomatic Complexity & Reliability Risk: 
● 1 – 10  Simple procedure, little risk
● 11- 20  More Complex, moderate risk
● 21 – 50  Complex , high risk
● >50  Untestable, VERY HIGH RISK

Cyclomatic complexity:



Software Complexity: Halstead Complexity Measures

14● Wikipedia, “Halstead complexity measures” 
● M. H. Halstead, “Elements of Software Science.” New York: Elsevier North-Holland, 1977.



Cyclomatic (McCabe) complexity & Halstead complexity

● These complexity measures have been around ~50 years

● They seem oversimplified and coarse

Can we do better?

15



Outline

● Motivation
● Software complexity
● Path complexity
● Branch selectivity
● Future directions

16



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path 



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0

n 1

count(n) 0

path(n) 0

Control Flow Graph (CFG)



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1

n 1 2

count(n) 0 1

path(n) 0 1



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1

n 1 2 3

count(n) 0 1 0

path(n) 0 1 1



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1

n 1 2 3 4

count(n) 0 1 0 0

path(n) 0 1 1 1



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1
● paths(up to depth 5) = 3

n 1 2 3 4 5

count(n) 0 1 0 0 2

path(n) 0 1 1 1 3



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1
● paths(up to depth 5) = 3

n 1 2 3 4 5

count(n) 0 1 0 0 2

path(n) 0 1 1 1 3



Path Complexity

● Upper bound on number of paths from start to exit up to 
a given depth.

○ Depth is defined to be the length of path
● paths(up to depth 1) = 0
● paths(up to depth 2) = 1
● paths(up to depth 3) = 1
● paths(up to depth 4) = 1
● paths(up to depth 5) = 3

n 1 2 3 4 5 6 7 8 …

count(n) 0 1 0 0 2 0 0 4 …

path(n) 0 1 1 1 3 3 3 7 …



Path Complexity

25● Lucas Bang, Abdulbaki Aydin, Tevfik Bultan: Automatically computing path complexity of 
programs. ESEC/SIGSOFT FSE 2015: 61-72

?



Can you count the paths Will Hunting?

26



Path Counting 

27

Control Flow Graph (CFG)



Path Counting via Matrix Exponentiation

28

T: adjacency 
matrix for the 
automaton

(i,j): number of 
edges from i to j



Counting Paths via Generating Functions
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Counting Paths via Generating Functions
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Good job Will Hunting!
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Path Complexity

32● Lucas Bang, Abdulbaki Aydin, Tevfik Bultan: Automatically computing path complexity of 
programs. ESEC/SIGSOFT FSE 2015: 61-72



Path Complexity

33● Lucas Bang, Abdulbaki Aydin, Tevfik Bultan: Automatically computing path complexity of 
programs. ESEC/SIGSOFT FSE 2015: 61-72

?



Path Complexity & Asymptotic Path Complexity

● A closed-form solution for the path counting function can be 
computed from the generating function

● It involves 
○ finding the roots of the denominator of the generating function
○ taking linearly independent combination of exponentiated 

roots 
○ solving for the coefficients

Asymptotic path complexity:

● extract the highest order term using asymptotic analysis 34



Examples from Java SDK 
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Examples from Java SDK 
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Examples from Java SDK 
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Comparison with other Complexity Measures

Cyclomatic Complexity: corresponds to the maximum number of 
linearly independent paths in the CFG

NPATH Complexity: the number of acyclic paths in the CFG

Path Complexity

38



Comparison with other Complexity Measures
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Comparison with other Complexity Measures
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Asymptotic Path Complexity 

41

Asymptotic path complexity of methods in Java SDK and Apache 
libraries



Path Complexity for Recursive Functions

Path complexity analysis we have discussed so far is intra-procedural

It only counts the paths within one method

How about procedure calls, recursion?

Can we count paths in recursive functions?

42Eli Pregerson, Shaheen Cullen-Baratloo, David Chen, Duy Lam, Max Szostak, Lucas Bang: “Formalizing 
Path Explosion for Recursive Functions via Asymptotic Path Complexity.” FormaliSE 2023: 76-85



Path Complexity for Recursive Functions

● Control flow graphs support a regular language of paths (DFA)
○ Do not match function call to function return

● Paths in recursive functions are not regular
○ Need a stack to match function calls and returns (PDA)

● Context free grammars work



Path Complexity for Recursive Functions

T → 0A
A → 1B
B → 2C
C → 3D|4E
D → 7
E → T5F
F → T6G
G → 7

Program
Inter-procedural 
control flow graph

Context 
free grammar



Path Complexity for Recursive Functions

T = zA
A = zB
B = zC
C = zD+zE
D = z
E = zTF
F = zTG
G = z

Eliminate 
variables to get 
the generating 
function
z5 + z7T2 - T = 0

Asymptotic Path 
Complexity
4n/12 = 1.12n

T → 0A
A → 1B
B → 2C
C → 3D|4E
D → 7
E → T5F
F → T6G
G → 7

Context 
free grammar

Replace terminal 
characters with z



Asymptotic Path Complexity Predicts the 
Severity of Symbolic Execution Path Explosion

Gabriel Bessler, Josh Cordova, Shaheen Cullen-Baratloo, Sofiane Dissem, Emily Lu, Sofia Devin, Ibrahim 
Abughararh, Lucas Bang: Metrinome: Path Complexity Predicts Symbolic Execution Path Explosion. ICSE 
(Companion Volume) 2021: 29-32



Symbolic Execution ?

Asymptotic Path Complexity Predicts the 
Severity of Symbolic Execution Path Explosion



Symbolic Execution ?

Asymptotic Path Complexity Predicts the 
Severity of Symbolic Execution Path Explosion



Symbolic Execution

Asymptotic 
Path Complexity
O( f ( depth ) )

Asymptotic Path Complexity Predicts the 
Severity of Symbolic Execution Path Explosion

Upper Bound

?
KLEE’s path count correlates with path complexity



Code Comprehension: An fMRI Study

[Peitek, Norman, et al.]

● Compared existing complexity metrics against fMRI data
○ Participants have to look at a function and figure out what it 

does
○ Collect brain (de)activation data and human-based difficulty 

ratings
○ See how they correlate with existing metrics focused on code 

properties
■ LOC, McCabe’s, Halstead, Dependency Degree

Peitek, Norman, et al. “Program Comprehension and Code Complexity Metrics: An fMRI Study” ICSE, 2021



Results

● Overall, all analyzed metrics, except McCabe, are useful 
predictors of code comprehension difficulty

● Each metric performed better on different Brodmann Areas and 
code-comprehension indicators



Asymptotic 
Path Complexity
O( f ( depth ) )

Asymptotic Path Complexity Correlates with Code Comprehension

Kendall Rank 
Correlation

● Participant-reported 
subjective complexity

● Code Comprehension 
time

● Brain activation in 
areas responsible for 
semantic processing

ode

Sofiane Dissem, Eli Pregerson, Adi Bhargava, Josh Cordova, Lucas Bang: Path Complexity Correlates 

with Source Code Comprehension Effort Indicators. ICPC 2023: 266-274



Kendall Rank Correlations by Comprehension Effort 
Indicator

Asymptotic path complexity (APC) has a higher correlation than any 
other metric for several code comprehension difficulty indicators



Software complexity, verifiability, understandability

[Bessler et al.] Path complexity → verifiability via symbolic execution

[Dissem et al.] Path complexity → code understandability

[Feldman et al.] Code verifiability → code understandability

“Our empirical study on the correlation between tool-based verifiability 
and human-based metrics of code understanding suggests there is a 
connection between whether a tool can verify a code snippet and how 
easy it is for a human to understand”

54

Kobi Feldman, Martin Kellogg, Oscar Chaparro: “On the Relationship between Code Verifiability and 
Understandability.” ESEC/SIGSOFT FSE 2023: 211-223



Software complexity, verifiability, understandability

55

software 
complexity

software 
verifiability

software 
understandability

[Bessler et al.] [Dissem et al.]

[Feldman et al.]
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What about infeasible paths?

Just looking at paths in the control flow graph (like in path complexity) 
does not give us the full picture about a program’s behavior

● Not all paths are feasible

For some paths, it may be easy to check that they are feasible

● Randomly pick input values and see which paths are executed

But, for some paths it may not be easy to find a value that triggers the 
path

57



1 public class Main {
2   public static void main ( String [] args ) {
3     int arg = Verifier.nondetInt ();
4     if ( arg < 0 )
5       return ;
6     int x = arg / 5;
7     int y = arg / 5;
8     Main inst = new Main ();
9     inst.test(x, y);
10  }
11  public void test ( int x, int z) {
12     System.out.println("Testing ExSymExe7");
13     int y = 3;
14     z = x - y - 4;
15     if ( z != 0 )
16       System.out.println ("branch FOO1");
17     else {
18       System.out.println ("branch FOO2");
19       assert false;
20     }
21     if ( y != 0 )
22       System.out.println("branch BOO1");
23     else
24       System.out.println("branch BOO2");
25   }
26 }

What is the likelihood of reaching 
the assertion statement if we run a 

random testing tool?

Is the assertion statement hard to 
reach for a random testing tool?



Identify Hard to Reach Statements

Target 
Statement

Hard to Reach 
Statement

Program + Target Statement

Easy to Reach 
Statement



Probabilistic Reachability Analysis

Target 
Statement

Hard to Reach 
Statement

Program + Target Statement

Easy to Reach 
Statement

Probabilistic Symbolic 
Execution

Statistical Symbolic 
Execution



Symbolic Execution based Techniques: Issues

➢ Exponential increase in the number of program 
paths

➢ Linear increase in path constraint size ⇒ exponential 
increase in cost of symbolic execution

➢ Complexity increases further with model counting



PReach

Path constraints Branch constraints

Exponential 
analysis cost

Polynomial analysis 
cost

Trades off accuracy for scalability



PReach

Discrete Time Markov Chain Model

Probabilistic Model Checking

Reachability Probability

< Threshold Hard to Reach 
Statement

Program + Target Statement

Easy to Reach 
Statement

Seemanta Saha, Mara Downing, Tegan Brennan, Tevfik Bultan: "PREACH: A Heuristic for Probabilistic 
Reachability to Identify Hard to Reach Statements.” ICSE 2022: 1706-1717



arg < 0

z ≠ 0

y != 0

1 public class Main {
2   public static void main ( String [] args ) {
3     int arg = Verifier.nondetInt ();
4     if ( arg < 0 )
5       return ;
6     int x = arg / 5;
7     int y = arg / 5;
8     Main inst = new Main ();
9     inst.test(x, y);
10  }
11  public void test ( int x, int z) {
12     System.out.println("Testing ExSymExe7");
13     int y = 3;
14     z = x - y - 4;
15     if ( z != 0 )
16       System.out.println ("branch FOO1");
17     else {
18       System.out.println ("branch FOO2");
19       assert false;
20     }
21     if ( y != 0 )
22       System.out.println("branch BOO1");
23     else
24       System.out.println("branch BOO2");
25   }
26 }

Control 
Flow Graph



0.5

1.0

0.999…

1.0

1.0 1.0

0.5

2.32e-10

Control 
Flow 
Graph

Discrete 
Time 

Markov 
Chain

arg < 0

z ≠ 0

y != 0



Branch Selectivity

1 public int test (int input) {
2    if (input == 0)
3        assert false;
4    else if (input > 0)
5        return 1; 
6    else
7        return -1;
8 }

32-bit signed integer, 232 possible values

Selectivity of this branch is 1/232

Model Counting
Branch Condition  (Tb)

Branch Constraint

input == 0

(declare-fun input() Int)
(assert (= input 0))
(check-sat)

Branch Model 
Count (|Tb|)= 1 Branch Count (|Tb|) = 1

Domain Size (|Db|) = 232

Selectivity, S(b) = 1/232



Model Counting

The classic (Boolean) SAT problem: is formula ! satisfiable?

! is satisfied by setting

● A satisfying assignment is called a model for !

67

The model counting problem:

how many models are there for !?



ABC

formula

! bound k

counting 
function

#!

# of models within bound k for 
which ! evaluates to true

INPUT OUTPUT

ABC: Model counting constraint solver
Abdulbaki Aydin, Lucas Bang, Tevfik Bultan: “Automata-Based Model Counting for String Constraints.” 
CAV (1) 2015: 255-272
Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov, Tevfik Bultan, Fang Yu:
“Parameterized model counting for string and numeric constraints.” ESEC/SIGSOFT FSE 2018: 400-410



ABC in a nutshell 

Automata-based constraint solving

Basic idea:

Automata can 
represent 
sets of strings

Represent satisfying 
solutions for constraints as 
strings

Construct an 
automaton that accepts 
satisfying solutions for 
a given constraint

Given some bound, 
count the number of 
paths in a graph

This reduces the 
model counting 
problem to path 
counting



Again, path counting!

70



Automata-based model counting 

71

Automata can represent sets of 
strings

● Represent satisfying solutions for 
constraints as strings

This reduces the model counting 
problem to path counting

● Given some bound, count 
the number of paths in a 
graph¬match(v, (ab)*)



0.5

1.0
0.5

0.999…

1.0

1.0 1.0

0.5

2.32e-10

dtmc
module test
s : [0..7] init 0;
[] s = 0 -> 0.5 : (s' = 1) + 0.5 : 
(s' = 2);
[] s = 2 -> 0.99999999976 : (s' = 3) 
+ 2.32e-10 : (s' = 4);
[] s = 3 -> 1.0 : (s' = 5);
[] s = 4 -> 1.0 : (s' = 5);
[] s = 5 -> 1.0 : (s' = 6);
[] s = 6 -> 1.0 : (s' = 7);
[] s = 7 -> 1.0 : (s' = 1);
[] s = 1 -> 1.0 : (s' = 1);
endmodule

DTMC Model in PRISM

P=? [F s = 4]

PCTL Query

What is the 
probability that the 

target node is 
reached eventually?



PReach: Tools and Benchmarks

● Branch selectivity → PReach

● Refined branch selectivity

○ using interval analysis (box domain) → PReach-I

○ using relational analysis (polyhedra domain) → PReach-P



Assessment on SV-Comp Benchmarks

Accuracy: 95.8

Precision:  95.1 

Recall:      90.2 

How successful is Preach in identifying hard to reach statements?



PReach vs. PSE and SSE:



PReach vs. PSE and SSE:
PReach is orders of magnitude faster



Can we use branch selectivity to improve verifiability?

● We showed that branch selectivity can help us identify hard to 
reach statements

● Can we use branch selectivity and probabilistic analysis to 
improve performance of fuzzing tools?

77
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Rare-Path Guided Fuzzing

Technique to 
Identify Rare Paths

Rare Path-Guided 
Concolic ExecutionRare 

Paths

Rare Path
triggering 

inputs

Fuzzer Coverage

Fuzzer More 
coverage?

Random Initial 
Seed

Rare-Path 
Guided Seed 

Set

Seemanta Saha, Laboni Sarker, Md Shafiuzzaman, Chaofan Shou, Albert Li, Ganesh Sankaran, Tevfik
Bultan: “Rare Path Guided Fuzzing.” ISSTA 2023: 1295-1306
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Identify Rare Program Paths

Rare Path : A program path which is unlikely to be exercised if we 
run fuzzer with a uniformly chosen random input.

To identify rare paths:
• Use Branch Selectivity 
• Same approach we used earlier for identifying hard to reach 

statements
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Heuristic: Identify Rare Program Paths

Probabilistic Control Flow Graph

Estimated Path Probability

< Threshold

Rare Paths

Program

1 public int test (int input) {
2    if (input == 0)
3        assert false;
4    else if (input > 0)
5        return 1; 
6    else
7        return -1;
8 }

32-bit signed integer, 232 possible values

Selectivity of 
this branch 
is 1/232

Branch Selectivity



Rare-Path Guided Fuzzing: Motivation

char *CUR;
#define CMP3( s, c1, c2, c3 ) \
( ((unsigned char *) s)[ 0 ] == c1 && \
((unsigned char *) s)[ 1 ] == c2 && \
((unsigned char *) s)[ 2 ] == c3 )

int main(int argc, char **argv) {
CUR = argv[1];
if (CMP3(CUR, 'D', 'O', 'C')) {
CUR = CUR + 3;
parse_cmt();
if(parse_att())
/* go deeper */

}
return 0;

}
void parse_cmt() {
if(*CUR == '<' || CUR == '>')
CUR++;

}
int parse_att() {
if (CMP3(CUR, 'A', 'T', 'T'))
return 1;

return 0;
}

81

DOC

ATT

SKIPS ‘<’ or ‘>’ 

Inputs:
DOCATT

DOC<ATT
DOC>ATT

Fuzzer with random seed cannot 
generate sequences “DOC” and 

“ATT” within 1 hour

Our rare path analysis can 
generate seed “DOC<ATT” within 

1 minute and fuzzer can explore 
deeper functionalities immediately



Heuristic: Identify Rare Program Paths

char *CUR;
#define CMP3( s, c1, c2, c3 ) \
( ((unsigned char *) s)[ 0 ] == c1 && \
((unsigned char *) s)[ 1 ] == c2 && \
((unsigned char *) s)[ 2 ] == c3 )

int main(int argc, char **argv) {
CUR = argv[1];
if (CMP3(CUR, 'D', 'O', 'C')) {
CUR = CUR + 3;
parse_cmt();
if(parse_att())
/* go deeper */

}
return 0;

}
void parse_cmt() {
if(*CUR == '<' || CUR == '>')
CUR++;

}
int parse_att() {
if (CMP3(CUR, 'A', 'T', 'T'))
return 1;

return 0;
}

Control 
Flow Graph

82

1

3

2

4

5

7

6

8 24

9 10

11

12

13 14

15 16

17

19

18

20 21

22



Probabilistic CFG
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Path Probability Estimation
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0.5

1.0 1.0
0.996

Path Probability

1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 8.16 x 10-18

Multiply edge probabilities to 
compute path probability

Nodes taken by the path



Path Probability Estimation
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1->2->3->4->10->11 1.59 x 10-5

Nodes taken by the path



Path Probability Estimation
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1->2->3->4->5->12->13->17->6->18->21->22->8->9->11 1.27 x 10-10

Nodes taken by the path



Rare Path
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Experimental Setup and Benchmarks

➢We ran a fuzzer with a random seed for 24 hours
➢We used maximum of 25% time for rare seed generation (6 hours) and 

ran the fuzzer for the remaining 75% time (18 hours) for fuzzing 

Benchmarks Lines of Code

tinyC 190

inih 243

calculator 1312

cJSON 3845

libxslt 33371

libxml2 186116

SV-Comp (seq-mthreded) 1016 (avg.)
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Experimental Evaluation

Fuzzer Coverage

Fuzzer More 
coverage?

Random Initial 
Seed

Rare-Path 
Guided Seed 

Set
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Coverage Improvement

Coverage Improvement over AFL++
(Higher is better)

Coverage Improvement over FairFuzz
(Higher is better)

% coverage 
improvement

6.47%     0.00%    1.33%   4.19%   18.86%  20.35%  8.47% 0.94%    0.00%   0.51%    4.14%   31.86%  18.29%   4.7%
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Coverage Improvement

Coverage Improvement over AFL++ and FairFuzz
(Higher is better)

libxml2



Outline

● Motivation
● Software complexity
● Path complexity
● Branch selectivity
● Conclusions and Future directions
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Conclusions

Recent results indicate that 
● Path complexity can be computed in a scalable manner
● There are effective heuristics for probabilistic reachability analysis 

and rare path analysis
● Software complexity, verifiability, understandability are related
● Refined software complexity analysis can be used to predict 

performance of different types of testing and verification 
techniques
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Future directions

● Developing a complexity metric that combines path complexity & 
branch selectivity

● Developing heuristics/guidance for verification/testing tools using 
path complexity & branch selectivity

● Using ML techniques to assess if path complexity and branch 
selectivity are useful features  
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THE END


