Software Complexity, Path
-Com pJexgy,,_,nd

S e ey

Tevfik Bultan
Verification Lab (VLab), Computer Science Department
University of California, Santa Barbara

VLab Collaborators

ye _
Lucas Bang, Harvey Mudd ~ Seemanta Saha, Intel Laboni Sarker, UCSB Chaofan Shou, UC Berkeley

S

Abdulbaki Ayd|n, Meta William Eiers Mara Down|ng, UCSB Ganesh Sankaran’ Amazon

Stevens Institute of Technology

{ “

Tegan Brennan MD Shafiuzzaman, UCSB Albert Li, Oracle
Stevens Institute of Technology

Outline

Motivation
Software complexity
Path complexity
Branch selectivity
Future directions

Software engineering is 56 years old!

In 1968 a seminal NATO Conference
was held in Garmisch, Germany

Attendees of the
1968 Garmisch
conference

Margaret Hamilton

- Director of Software
- Development for the
" NASA'’s Apollo
mission

Purpose: to look for a
solution to software crisis

—50 distinguished computer
scientists, programmers and
industry leaders got together
to look for a solution to the
difficulties in building large
software systems

—Considered to be the birth of
“software engineering’ as a
research area

What was software crisis?

Large software systems often:

Do not provide the desired functionality

Take too long to build

Cost too much to build

Require too much resources (time, space) to run
Cannot evolve to meet changing needs

Software engineering as a remedy: a systematic, disciplined,
quantifiable approach to the production and maintenance of software.

Software’s chronic crisis

« A quarter century (1994) after the Garmisch conference, an article
in Scientific American declared:

Software's Chronic Crisis

TRENDS IN COMPUTING by W. Wayt Gibbs, staff writer.
Copyright Scientific American; September 1994; Page 86
Despite 50 years of progress, the software industry remains
years-perhaps decades-short of the mature engineering
discipline needed to meet the demands of an information-age
society

Software’s chronic crisis

* Another quarter century later:

*

s 0 893m
70 wntlll 7 Suporedn
2 N 9.3 KPCC,

« This is a photo of the navigation system of my car

— It crashes and reboots while | am driving!

Software’s chronic crisis

We are still looking for a:
e systematic, disciplined, quantifiable approach to the production

and maintenance of software
which ensures:
e safety, dependability, security, reliability, availability, usability,
efficiency, scalability, and maintainability

of software systems.

Outline

Motivation

Software complexity
Path complexity
Branch selectivity
Future directions

Software Complexity

[Kearney et al. 19806]

“In recent years much attention has been directed toward reducing
software cost. To this end, researchers have attempted to find
relationships between the characteristics of programs and the
difficulty of performing programming tasks. The objective has been
to develop measures of software complexity that can be used for
cost projection, manpower allocation, and program and
programmer evaluation.”

10

So
ftware Complexity Measurement

Software

St
)(mm{mn(u,
Tjs - d.getElenentsdy

u createElen d;
"'Icm\ne t. face! n_Us/sdk. § s#x o8 16
(3s:

!b—rouz“»f

id="
>Uumuen(n, >
s t

els) (0):

t. fagebonk uemm uS/sm jsextom
rteefore(is:
'4acabnnk—)ssdk Syiet >
s
n-1 rcadpr—[ext" nvr'-‘:(nr\\m\l
c-n&adef" o

Lnaqc—,u\e)
-bars

url(ho
sxpanell m\o \"url)

#search-box hidden—xs hidden-s® pull-left ml-10">
arch_form{); >

uhm]l stn hidden-xs hidden-s2 pull eft ml-10">
D tho get_page_Link(sxpe +submit-1ink!

puli-right mr-10">

n()) €

Complexity

Measurement
A

11

Software Complexity: What can we do with it?

Can we use software complexity measurements to predict/assess
things like:

bug-proneness

defects

testing effort

verification effort

program comprehension effort
maintenance effort

12

Software Complexity: Cyclomatic (McCabe) Complexity

Cyclomatic complexity: McCabe’s 2008 presentation to the USA

M=E—N+2P, Department of Homeland Security:

Cyclomatic Complexity & Reliability Risk:
e 1-10 Simple procedure, little risk

where

o £ = the number of edges of the graph.

°
o N = the number of nodes of the graph. e 21-50 Complex, high risk
e >50 Untestable, VERY HIGH RISK

e P = the number of connected components.

13

Software Complexity: Halstead Complexity Measures

For a given problem, let:

¢ 7)1 = the number of distinct operators
¢ 72 = the number of distinct operands
e N = the total number of operators
e IN5 = the total number of operands
From these numbers, several measures can be calculated:
e Program vocabulary: 7 = 11 + 72
e Program length: N = N; + N,
e Calculated estimated program length: N = m logy M1 + 12 logy 12

eVolume: V' = N x log, n
N.
«Difficulty : D = -1 x 22
2 m
eEffortt E =D xV

The difficulty measure is related to the difficulty of the program to write or understand,
The effort measure translates into actual coding time using the following relation,

)) E
e Time required to program: T' = 1_8 seconds

Halstead's delivered bugs (B) is an estimate for the number of errors in the implementation.

2
E3

3000

is accepted.!]

Numb f deli d b B tly, B v
e Number o1 aelivere ugs : = or, more recently, =
9 Y 3000

main()
{
int a, b, ¢, avg;
scanf("%d %d %d", &a, &b, &c);
avg = (a+b+c)/3;
printf("avg = %d", avg);

The distinct operators (1) are: main, (), {}, int, scanf, &, =, +, /, printf, ,, ;

The distinct operands (72) are: a, b, ¢, avg, "%d %d %d", 3, "avg = %d"
o =12, =7,7=19
eN; =27, N, =15, N =42
e Calculated Estimated Program Length: N =12x log212 + 7 X logs 7T = 62.67

eVolume: V' = 42 x logy19 = 178.4

12 1
o Difficulty: D = - X 75 =12.85

e Effort: E = 12.85 x 178.4 = 2292.44

2292.44
 Time required to program: 1" = BT = 127.357 seconds
2
2292.4473
oN f deli :B=——=0.
umber of delivered bugs 3000 0.05

14

Cyclomatic (McCabe) complexity & Halstead complexity

e These complexity measures have been around ~50 years

e They seem oversimplified and coarse

Can we do better?

15

Outline

Motivation

Software complexity
Path complexity
Branch selectivity
Future directions

16

Path Complexity

e Upper bound on number of paths from start to exit up to
a given depth.
o Depth is defined to be the length of path

Path Complexity

e Upper bound on number of paths from start to exit up to
a given depth.
o Depth is defined to be the length of path
e paths(up todepth1)=0

n 1

count(n) | QO

path(n) | 0

Control Flow Graph (CFG)

5. return a;

0. gcd(a,b)

SR

R

3. a = a-b;

4. b = b-a;

Path Complexity

e Upper bound on number of paths from start to exit up to

a given depth. 0. gcd(a,b)
o Depth is defined to be the length of path !
e paths(up to depth 1) =0 @
e paths(up to depth 2) = 1

5. return a;

R

n 1 2 3. a = a-b; 4. b = b-a;

count(n) | QO 1

path(n) | 0 1

Path Complexity

e Upper bound on number of paths from start to exit up to
a given depth.
o Depth is defined to be the length of path
e paths(uptodepth1)=0
e paths(up to depth 2) =1
e paths(up to depth 3) =1

n 1 12 |3

count(n) | QO 1 0

path(n) | 0 1 1

5. return a;

0. gcd(a,b)

SR

R

3. a = a-b;

4. b = b-a;

Path Complexity

e Upper bound on number of paths from start to exit up to
a given depth.
o Depth is defined to be the length of path
paths(up to depth 1) =0
paths(up to depth 2) = 1
paths(up to depth 3) = 1
paths(up to depth 4) =1

n 1 12 3 |4

countt) |10 |1 |0 | O

path(n) | 0 |1 1 1

5. return a;

0. gcd(a,b)

SR

R

3. a = a-b;

4. b = b-a;

Path Complexity

e Upper bound on number of paths from start to exit up to
a given depth. 0. gcd(a,b)
o Depth is defined to be the length of path !
paths(up to depth 1) =0
paths(up to depth 2) = 1
paths(up to depth 3) = 1
paths(up to depth 4) = 1 5. return a;

paths(up to depth 5) = 2 @

n 1 2 3 4) 3. a = a-b; 4. b = b-a;

count(n) | Q 1 O 0 |2

path(n) | 0 1 1 1 3

Path Complexity

e Upper bound on number of paths from start to exit up to
a given depth.
o Depth is defined to be the length of path

paths(up to depth 1) =0

paths(up to depth 2) = 1

paths(up to depth 3) = 1

paths(up to depth 4) = 1

paths(up to depth 5) = =

n 1 12 |3 |4 5

count(n) | Q 1 O 0 |2

path(n) | 0 1 1 1 3

5. return a;

0. gcd(a,b)

o

3. a = a-b; 4. b = b-a;

Path Complexity

e Upper bound on number of paths from start to exit up to
a given depth.
o Depth is defined to be the length of path

paths(up to depth 1) =0

paths(up to depth 2) = 1

paths(up to depth 3) = 1

paths(up to depth 4) = 1

paths(up to depth 5) = =

n 1 12 |3 |4 5 |6 |7 |8

count)) '0 1 O |0 (2 |0 O 4

path(n) ' 0 | 1 1 1 13 |3 |3 | 7

5. return a;

0. gcd(a,b)

o

3. a = a-b; 4. b = b-a;

Path Complexity

-

Program

\\

~N

?

PAth

| Complexity

Analyzer
(PAC)

Path Length
Bound, n

!

Number of
paths within
length n

Counting
Function,
path(n)

25

Can you count the paths Will Hunting?

>y =

N /‘\.’;
! 2 =
Fra) Ha adja.maf) mmalyine A

—

oo T&Fk

z) Ha melowe %-u:rmj IR yuumdz

»-F 2 s'w‘ep Lalle. :

Path Counting

Control Flow Graph (CFG)

GSepros

Chris Godsil
Gordon Royle

Algebraic Graph
Theory

27

Path Counting via Matrix Exponentiation

T adjacency
matrix for the
automaton

(i,j): number of
edges fromitoj

1011 0131 1074
0021 0042| 0084|’
0000 0000 0000

f(0)=0

f)=2

f(2)=3

011

10157
00168
0000

f3)=8

28

Counting Paths via Generating Functions

e We can compute a generating function, g(z), using the adjacency matrix

(0110]
1011
0021

0000.

(@) = 1ndet(l—zT:n+1,1)_ 2z — z°
9(2) =(-1) zxdet(I —zT) 1—2z—z2+ 223

29

Counting Paths via Generating Functions

2z — z2

1—2z—2z2 4+ 223

g(z) =
» Each f (i) can be computed by Taylor expansion of
g(z)

g g®@)
9 = LD 0 92O 0 9T O o, 10O,

(Z):®Z 4@ 4@ —5‘3+@z + -

g(2) = f(0)z° + fF(Dz' + f(2)z2 + f(B)z3 + f(D)z* + -~

30

Good job Will Hunting!

)

(7 40 e G

¥ ued
,'r/ (/t/ i ,/f‘ LAH'7 /f"/ ;"',1/' x5 /

f

vitherw grurirne Pl b f 5 shep
/

W

-

) 2 /
‘.(P s /'”7 l"""’/ ¥ g /‘k P

/ / Py :
= v‘ lighrw Jov WA '/";' /" -1

|
'

This is correct.
Who did this 7

31

Path Complexity

-

Program

N

~N

PAth

| Complexity

Analyzer
(PAC)

Path Length
Bound, n

!

Number of
paths within
length n

Counting
Function,
path(n)

32

Path Complexity

-

Program

~N

?

PAth
| Complexity

Analyzer
(PAC)

Y

Path Length
Bound, n

!

Number of
paths within
length n

Counting
Function,
path(n)

-

Asymptotic
Behavior
path(n) = ©(f(n))

J

33

Path Complexity & Asymptotic Path Complexity

e A closed-form solution for the path counting function can be
computed from the generating function
e Itinvolves
o finding the roots of the denominator of the generating function

o taking linearly independent combination of exponentiated
roots

o solving for the coefficients

Asymptotic path complexity:

e extract the highest order term using asymptotic analysis

34

Examples from Java SDK

private static void rangeCheck (int length, @
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException (
"fromIndex (" + fromIndex + ") >

toIndex (" + toIndex + ")"); E i

}

if (fromIndex < 0) { ° °
throw new ArrayIndexOutOfBoundsException (fromIndex);

} ° 0

if (toIndex > length) {

throw new ArrayIndexOutOfBoundsException (toIndex) ;

}

» Path Complexity: 4
» Asymptotic: ©(1)
» Complexity Class: Constant

public Matcher reset () {

Examples from Java SDK

first = -1;

last = 0;

oldLast = -1;

for (int i=0; i<groups.length; i++)
groups[i] = -1;

for(int i=0; i<locals.length; i++)
locals[i] = -1;

lastAppendPosition = 0;

from = 0;

to = getTextLength();

return this;

» Path Complexity: 0.12n° +1.25n+ 3
» Asymptotic: ©(n?)
» Complexity Class: Polynomial

36

Examples from Java SDK

private static int binarySearchO (long[] a,
int fromIndex, int toIndex, long key) {

Comrr
int low = fromIndex; o
(2)

int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;

long midval = a[mid]; °
if (midval < key) °
low = mid + 1;

else if (midval > key) ° °

high = mid - 1;

else
return mid; // key found ° °

}

return —-(low + 1); // key not found. @ °

» Path Complexity: (6.86)(1.17)"+(0.22)(1.1)"+(0.13)(0.84)" 42
» Asymptotic: ©(1.17")
» Complexity Class: Exponential

Comparison with other Complexity Measures

Cyclomatic Complexity: corresponds to the maximum number of
linearly independent paths in the CFG

NPATH Complexity: the number of acyclic paths in the CFG

Path Complexity

38

Comparison with other Complexity Measures

Method Cyclomatic | NPATH Path Asymptotic
Complexity | Complexity | Complexity Complexity
rangeCheck() 4 4 4 o(1)
reset() 3 4 0.12n® +1.25n+ 3 o(n?)
binarySearch0() | 4 4 (6.86)1.17" + (0.22)1.1" | ©(1.17")

+(0.13)(0.84)" + 2

39

Comparison with other Complexity Measures

Cyclomatic NPATH | Asymptotic
Pattern Control Flow Graph Complexity | Complexity | Complexity
K If-Else O ey K K
in sequence D P @ K+1 2 2
.
K I-Else e, CON
nested e) K+ 1 K+ 1 K+ 1
(3 (3
in sequence o ° K+1 2 o(n")
K Loops Cor=Com o= K+ 1 K+ 1 o(b")

nested

40

Asymptotic Path Complexity

Asymptotic path complexity of methods in Java SDK and Apache
libraries

Java 7 SDK Apache
60.0% 60.8%

30.1% 27.0%

41

Path Complexity for Recursive Functions

Path complexity analysis we have discussed so far is intra-procedural

It only counts the paths within one method

How about procedure calls, recursion?

Can we count paths in recursive functions?

42

Path Complexity for Recursive Functions

e Control flow graphs support a regular language of paths (DFA)

o Do not match function call to function return

e Paths in recursive functions are not regular
o Need a stack to match function calls and returns (PDA)

e Context free grammars work

0. fact(n)
vy %
\
\
1. al=b \ '
\‘ recursive
call
1

3. f=1;| |4. f= n * fact(n-1);

/ .
\ / _‘recursive

7
return
5. return f; |~

‘3.a=a—b;‘ ‘4.b=b—a;

~

N
non-recursive ~ < _

return >

<~ o O WD R O

Path Complexity for Recursive Functions

Inter-procedural Context
control flow graph free grammar

Dy

Program

int fib(int n) {

int f; “ T—0A
if(n < 2) A — 1B
f = 1; B - 2C
else {int a = fib(n-1); C — 3DJ4E
int b = fib(n-2); D—7
£ -2t bi) o

return f; } non-recursive ~ ~ B | G — 7

Path Complexity for Recursive Functions

Context
free grammar

T — 0A
A— 1B
B— 2C
C — 3DJ4E
D—>7
E —- T5F
F—T6G
G-—-7

Replace terminal
characters with z

T=2zA
A=2zB
B=zC

C =zD+zE
D=z
E=2zTF
F=2zTG
G=z

Eliminate
variables to get
the generating
function

z5+2'T2-T=0

Asymptotic Path
Complexity

4m12 = 1 420

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

Gabriel Bessler, Josh Cordova, Shaheen Cullen-Baratloo, Sofiane Dissem, Emily Lu, Sofia Devin, Ibrahim
Abughararh, Lucas Bang: Metrinome: Path Complexity Predicts Symbolic Execution Path Explosion. ICSE
(Companion Volume) 2021: 29-32

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

yydaq uoiyoio1dx3

¢i%%##¢i/?

\

SymbOlIC ExeCUtlon Number of paths at this depth

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

‘ Metrinome

Vv

yydaq uoiyoio1dx3

¢i%%##¢i/?

\

SymbOlIC ExeCUtlon Number of paths at this depth

Asymptotic Path Complexity Predicts the
Severity of Symbolic Execution Path Explosion

A

Asymptotic

Path Complexity
Metrinome — O(f (depth))

/ ﬂUpper Bound
I\/Q/Q/ v
V V V V V V V V , ?

Symbolic Execution

yydaq uoiyoio1dx3

Number of paths at this depth

KLEE’s path count correlates with path complexity

Code Comprehension: An fMRI Study

[Peitek, Norman, et al.]

e Compared existing complexity metrics against fMRI data
o Participants have to look at a function and figure out what it
does
o Collect brain (de)activation data and human-based difficulty
ratings
o See how they correlate with existing metrics focused on code
properties
m LOC, McCabe’s, Halstead, Dependency Degree

Results

e Overall, all analyzed metrics, except McCabe, are useful
predictors of code comprehension difficulty

e Each metric performed better on different Brodmann Areas and
code-comprehension indicators

Asymptotic Path Complexity Correlates with Code Comprehension

Asymptotic
_ Path Complexity
Metrinome S —————— O(f(depth))

/ v A\
Kendall Rank

Correlation

N4

Participant-reported
subjective complexity
Code Comprehension
time

Brain activation in
areas responsible for
semantic processing

Kendall Rank Correlation, |7|

=
[

o
»

o
w

=
n

o
o

=
o

Kendall Rank Correlations by Comprehension Effort
ndicator

| |

Subjective Percent Completion BA 6 BA 21 BA 39 BA 44/45 BA 31 BA 32
Complexity Correct Time Activation Activation Activation Activation Deactivation Dectivation

Asymptotic path complexity (APC) has a higher correlation than any
other metric for several code comprehension difficulty indicators

m LOC
= Halstead
= McCabe
m DepDeg
= APC

Software complexity, verifiability, understandability

Bessler et al.] Path complexity — verifiability via symbolic execution

Dissem et al.] Path complexity — code understandability

Feldman et al.] Code verifiability — code understandability

“Our empirical study on the correlation between tool-based verifiability
and human-based metrics of code understanding suggests there is a
connection between whether a tool can verify a code snippet and how
easy it is for a human to understand”

54

Software complexity, verifiability, understandability

software
complexity

software
verifiability

—

N\

software
understandability

55

Outline

Motivation

Software complexity
Path complexity
Branch selectivity
Future directions

56

What about infeasible paths?

Just looking at paths in the control flow graph (like in path complexity)
does not give us the full picture about a program’s behavior

e Not all paths are feasible
For some paths, it may be easy to check that they are feasible

e Randomly pick input values and see which paths are executed
But, for some paths it may not be easy to find a value that triggers the

path

57

OJdoOUd WDN R

public class Main {
public static void main (String [] args) {
int arg = Verifier.nondetInt ()
if (arg < 0)
return ;
int x = arg / 5;
int y = arg / 5;
Main inst = new Main (),
inst.test(x, y):

}
public void test (int x, int z) {

System.out.println("Testing ExSymExe7") ;
int y = 3;
z=x-y - 4;
if (z '=0)

System.out.println ("branch FOO1") ;
else {

System.out.println ("branch FO02") ;

}
if (y '=0)

System.out.println ("branch BOO1l") ;
else

System.out.println ("branch BOO2") ;

Is the assertion statement hard to
reach for a random testing tool?

What is the likelihood of reaching
the assertion statement if we run a
random testing tool?

ldentify Hard to Reach Statements

Program + Target Statement

¥

g

Target Hard to Reach
Statement Statement

Easy to Reach
Statement

Probabilistic Reachability Analysis

Program + Target Statement

¥

10°

h[e] # 1[e]

Probabilistic Symbolic e e Statistical Symbolic
Execution 561 ox10" - Execution

h[2] # 1[2]

3
10 9x103

h[e] = 1[e] h[e] = 1[e]
h[1] = 1[1] h[1] = 1[1]
h[2] = 1[2] h[2] # 1[2]

h[e] = 1[e]

h1] = 101] h[e] # 1[e]

Target Hard to Reach
Statement Statement

Easy to Reach
Statement

Symbolic Execution based Techniques: Issues

> Exponential increase in the number of program
paths

> Linear increase in path constraint size = exponential
increase in cost of symbolic execution

> Complexity increases further with model counting

PReach

Path constraints Branch constraints

Exponerntial Polynomial analysis

analysis cost cost

Trades off accuracy for scalability

PReach

Program + Target Statement

¥

Discrete Time Markov Chain Model

¥

Probabilistic Model Checking

¥

Reachability Probability

public class Main {
public static void main (String [] args) {
int arg = Verifier.nondetInt ()
if (arg < 0)
return ;
int x = arg / 5;
int y = arg / 5;
Main inst = new Main (),
inst.test(x, y):

OJdoOUd WDN R

}
public void test (int x, int z)
System.out.println("Testing E Control
int y = 3;
z=x-y - 4;
if (z '=0)
System.out.println ("branch FOO1") ;
else {
System.out.println ("branch FO02") ;

Flow Graph

}
if (y '=0)

System.out.println ("branch BOO1l") ;
else

System.out.println ("branch BOO2") ;

Control Discrete
Flow Time
Graph Markov

Chain

Branch Selectivity

32-bit signed integer, 232 possible values

public int test (int input) {
if (input == 0) _ Selectivity of this branch is 1/232
assert false;
else if (input > 0)
return 1;
else
return -1;

O J o U xw N

——

(declare-fun input() Int) Branch Model
. L (assert (= input 0)) Count (|Tb|)=1 Branch Count (|Ty|) =1
Input == (check-sat) Domain Size (|Dy|) = 232

- s
Branch Condition (Tj) Selectivity, S(b) =1/2

Branch Constraint Model Counting

Model Counting
The classic (Boolean) SAT problem: is formula ¢ satisfiable?
p=xXVY)A(xVZIAZVW)AXA(yVD)

¢ is satisfied by setting (x,v,z,w,v) = (T,F,T,F,T)

e A satisfying assignment is called a model for ¢

The model counting problem:

how many models are there for ¢?

67

ABC: Model counting constraint solver

INPUT

formula

OUTPUT

counting
function

v

)

ABC

#p

A 4
a

1

of models within bound k for
which ¢ evaluates to true

bound k

ABC in a nutshell

Automata-based constraint solving

Basic idea:
Automata can Represent satisfying
represent :> solutions for constraints as
sets of strings strings
Construct an This reduces the Given some bound,

automaton that accepts :> model counting :> count the number of
satisfying solutions for problem to path paths in a graph
a given constraint counting

Again, path counting!

>y =

S /‘\.’;
! 2 =
Fra) Ha adja.maf) mmalyine A

—

oo T&Fk

z) Ha melowe %-u:rmj IR yuumdz

»-F 2 s'w‘ep Lalle. :

Automata-based model counting

Automata can represent sets of This reduces the model counting
strings problem to path counting
e Represent satisfying solutions for e Given some bound, count
constraints as strings the number of paths in a
—match (v, (ab)*) graph

01 10 01 011(8)
101 o _[013] 5 _ |10 +_[1015
a N N T=loo21['""" = |ooa2|"" =|oos4|'" |oo168
. o 0000 0000 0000 0000
— <—@—»@:> a,b FO=0 fM=2 f@®=3 f3)=8

b

71

dtmc
module test

s : [0..7] init O;
[] s =0 ->0.5: (s'"=1) + 0.5 :
(s' = 2);
[] s = 2 => 0.99999999976 : (s' = 3)
+ 2.32e-10 : (s' = 4)
[] s =3 ->1.0 : (s'" = 5);
[] s =4 -> 1.0 : (s' 5);
[] s =5 ->1.0 : (s' o)
[] s =6 ->1.0 : (s' = 17);
[] s =7 -> 1.0 : (s' 1);
[] s =1 ->1.0 : (s'" =1);
endmodule
DTMC Model in PRISM

What is

the

probability that the

target node is
reached eventually?

PCTL Query

PReach: Tools and Benchmarks

e Branch selectivity — PReach
e Refined branch selectivity
o using interval analysis (box domain) — PReach-l

o using relational analysis (polyhedra domain) — PReach-P

Assessment on SV-Comp Benchmarks

How successful is Preach in identifying hard to reach statements?

Accuracy: 95.8

Precision: 95.1

Recall: 90.2

PReach vs. PSE and SSE:

il
i I

Analysis time in seconds (PReach vs SSE)

800.00

600.00

400.00

200.00

0.00

Analysis time in seconds (PReach

2500.00

2000.00

1500.00

1000.00

500.00

0.00

vs SSE)

PReach-P

SSE (10)

SSE (100)

SSE (=)

Can we use branch selectivity to improve verifiability?

e \We showed that branch selectivity can help us identify hard to
reach statements

e Can we use branch selectivity and probabilistic analysis to
improve performance of fuzzing tools?

77

Rare-Path Guided Fuzzing

Random Initial

ol -

) Rare Path
Technique to - Rare Path-Guided - triggerin
Identify Rare Paths - l§a agles Concolic Execution iIgliuts ©

Rare-Path
Set Fuzzer - coverages

\/

78

Identify Rare Program Paths

Rare Path : A program path which is unlikely to be exercised if we
run fuzzer with a uniformly chosen random input.

To identify rare paths:

« Use Branch Selectivity

« Same approach we used earlier for identifying hard to reach
statements

79

Heuristic: Identify Rare Program Paths

Program

Probabilistic Control Flow Graph

Estimated Path Probability

¥

-

¥

Rare Paths

Branch Selectivity

32-bit signed integer, 232 possible values

1 public int test (int input) {
2 if |(input == 0) |

3 assert false; —
4 else if (input > 0)
5 return 1;
6
7
8

else
return -1;

}

Selectivity of
this branch
is 1/232

80

Rare-Path Guided Fuzzing: Motivation

char *CUR;
#define CMP3(s, cl, c2, c3) \
(((unsigned char *) s)[0] == cl && \
((unsigned char *) s)[1] == c2 && \
((unsigned char *) s)[2] == c3)

int main(int argc, char **argv) {

= aravl[1]1:
[if (cMp3(cUR, D', '0', 'c')) 1]

CUR = CUR + 3;
parse_cmt() ;

i
i/* go deeper */I

}
return 0;

}

yotd-parse—emt{—f

if(*CUR == '<' || CUR == '>'")
CUR++

| T O

Tt parse_att{r—
if (CMP3(CUR, 'A', 'T', 'T'))
returT

return 0;

}

DOC

SKIPS ‘<’ or ©’

ATT

Inputs:
DOCATT
DOC<ATT
DOC>ATT

Fuzzer with random seed cannot

generate sequences “DOC” and
“ATT” within 1 hour

Our rare path analysis can
generate seed “DOC<ATT” within
1 minute and fuzzer can explore
deeper functionalities immediately

81

char *CUR;
#define CMP3(s, cl, c2, c3) \

(((unsigned char *) s)[0] == cl && \
((unsigned char *) s)[1] == c2 && \
((unsigned char *) s)[2] == c3)

int main(int argc, char **argv) {
CUR = argv[l];
if (CMP3(CUR, 'D', 'O', 'C')) {
CUR = CUR + 3;
parse_cmt() ;
if (parse_att())
/* go deeper */
}
return O;
}
void parse cmt() {
if (*CUR == '<' || CUR == '>')
CUR++;
}
int parse att() {
if (CMP3(CUR, 'A', 'T', 'T'))
return 1;
return O;

}

Control
Flow Graph

Probabilistic CFG

Branch
Selectivity

Path Probability Estimation UCSB

o>

Path Probability
1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 816 x 1018

Multiply edge probabilities to
compute path probability

‘ Nodes taken by the path

84

Path Probability Estimation

Path Probability
1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 8.16 x 1018
1->2->3->4->10->11 1.59 x 10>

‘ Nodes taken by the path

85

Path Probability Estimation UCSB

o>

Path Probability
1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 816 x 1018
10 0% 1->2->3->4->10->11 1.59 x 105

1->2->3->4->5->12->13->17->6->18->21->22->8->9->11 1.27 x 1010

‘ Nodes taken by the path

86

Rare Path UCSB

>

Estimated path probability for a path less
than a threshold

Path Probability

1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24 816 x 1018

‘ Nodes taken by the rare path

87

Path-Guided Concolic Execution

Rare Path 1->2->3->4->5->12->14->15->17->6->7->18->19->20->22->8->24

Q@
O
5
n
2\
=
£.
=
=

DOC<ATT

‘ Nodes taken by the rare path

88

Experimental Setup and Benchmarks

> We ran a fuzzer with a random seed for 24 hours

> We used maximum of 25% time for rare seed generation (6 hours) and
ran the fuzzer for the remaining 75% time (18 hours) for fuzzing

Benchmarks Lines of Code
tinyC 190
inih 243
calculator 1312
cJSON 3845
libxslt 33371
libxml2 186116

SV-Comp (seq-mthreded) 1016 (avg.) 89

Experimental Evaluation

Rare-Path

Set » Fuzzer » coverage?

90

Coverage Improvement

B AFL++ B Rare Path-guided AFL++ B FairFuzz W Rare Path-guided FairFuzz
8000 10000 9086
6919
7500
o 6000 ®
=] (=]
s S
[o 5000
3 4000 °
(=] (&)
& & 2500
o 2000 o
0
tinyCc inih calculator cJSON libxsit libxmI2 SV-Comp
_% coverage ¢47% 0.00% 133% 419% 18.86% 2035% 8.47% 094% 0.00% 051% 414% 3186% 1829% 4.7%
Improvement

Coverage Improvement over AFL++ Coverage Improvement over FairFuzz
(Higher is better) (Higher is better)

91

Coverage Improvement

= AFL++ = Rare path guided AFL++ FairFuzz
= Rare path guided FairFuzz

10000 +
7500 +
Q
o e S
o y
1]
§ 5000 + (
Q
o
o
w 2500 +
0 : 1 T T T
0 5 10 15 20

Time in hours

libxml2

Coverage Improvement over AFL++ and FairFuzz
(Higher is better)

92

Outline

Motivation

Software complexity

Path complexity

Branch selectivity

Conclusions and Future directions

93

Conclusions

Recent results indicate that

Path complexity can be computed in a scalable manner

There are effective heuristics for probabilistic reachability analysis
and rare path analysis

Software complexity, verifiability, understandability are related
Refined software complexity analysis can be used to predict
performance of different types of testing and verification
techniques

94

Future directions

e Developing a complexity metric that combines path complexity &
branch selectivity

e Developing heuristics/guidance for verification/testing tools using
path complexity & branch selectivity

e Using ML techniques to assess if path complexity and branch
selectivity are useful features

95

