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Symbolic Execution

int foo(int i, j) {
 if (i == 0) {
   i = i + j
 } else {
   i = i - j
 }
 return i

}

i, j ← xi+xj , xj 
ret ← xi+xj 

i, j ← xi , xj 

i, j ← xi-xj , xj 
ret ← xi-xj 

Constraint solving is the enabling technique

int foo(int i, j) {
 if (i == 0) {
   i = i + j
 } else {
   i = i - j
 }
 return i

}

xi = 0 xi ≠ 0

Solving
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Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Path explosion

Decision Procedures An Algorithmic Point of View, Second Edition, 2016

Challenges of Symbolic Execution
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This Talk’s Target

Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Path explosion

Decision Procedures An Algorithmic Point of View, Second Edition, 2016
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• Query cache (partial) and simplification

• KLEE[OSDI’08], KLEE-Array[ISSTA’17]

• Query reduction

• SSE[ISSRE’12], Cloud9[PLDI’12]

• Query reuse

• Green[FSE’12], GreenTrie[ISSTA’15] 
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Existing Work of Optimizing Constraint Solving in SE



Our Observation

Symbolic 
Executor

Constraint 
Solver

PC Result

Existing work

Solver is used in a 
black-box manner
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Our Argument

Symbolic 
Executor

Constraint 
SolverTight Coupling
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Our Argument

Symbolic 
Executor

Constraint 
SolverTight Coupling White-box 

Usage
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Our Recent Progress

Symbolic 
Executor

Constraint 
Solver
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• Type and Interval 
Aware Array 
Constraint Solving 
[ISSTA 2021]



Our Recent Progress

Symbolic 
Executor

Constraint 
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• Partial Solution 
Prompted Symbolic 
Execution [ASE 20]

• Type and Interval 
Aware Array 
Constraint Solving 
[ISSTA 2021]
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• Partial Solution 
Prompted Symbolic 
Execution [ASE 20]

• Type and Interval 
Aware Array 
Constraint Solving 
[ISSTA 2021]



The symbolic 
execution of 
array code is 
challenging

Array SMT Theory

a[0] a[1] a[2] … a[n]

a[i] 

Array Code Symbolic Execution

Arrays are ubiquitous in programs
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Memory modeling in SE

• Byte-level memory reasoning in symbolic execution

• QF_ABV SMT theory

• KLEE、S2E、…

• Every data is represented by a byte array 

• Large amount of axioms (O(n^2))
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Memory modeling in SE

• Byte-level memory reasoning in symbolic execution

• QF_ABV SMT theory

• KLEE、S2E、…

• Every data is represented by a byte array 

• Many array variables in the path constraints

• Large amount of axioms (O(n^2))
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Problem

• Scalability of array constraint solving in symbolic execution

• Byte-level array representation

• Large number of axioms

• …
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Our Key Insights

• Many redundant axioms exist for byte array constraints

• Array access type information 

• Array index constraint

• Unsatisfiability can be decided earlier

16



Our Key Insights

• Many redundant axioms exist for byte array constraints

• Array access type information 

• Array index constraint

• Unsatisfiability can be decided earlier
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Our Key Idea

• Utilize the information calculated during symbolic execution

• Type information of array accesses

• Interval information of array index variables

• Check the unsatisfiability earlier

• Remove redundant axioms during solving
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Our Key Idea

• Utilize the information calculated during symbolic execution

• Type information of array accesses

• Interval information of array index variables

• Check the unsatisfiability earlier

• Remove redundant axioms during solving
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High-Level Procedure

Symbolic 
Executor

Type 
Information

Path 
Condition UNSAT Pre 

Checker

ABV SMT 
Solver

Interval 
Information

Solving Result
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Motivation Example

25

int foo(int i, j) {
   int a[4] = {0, 0, 0, 5}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]
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int foo(int i, j) {
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0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

R(a, i) + R(a, j) > 10
⋀

a[4] = {0, 0, 0, 5}
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0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

⋀

Index
Constraints
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Constrainta[4] = {0, 0, 0, 5}

R(a, i) + R(a, j) > 10

UNSAT Pre-check

Motivation Example
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0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

ILP

Index
Constraints
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   if (i + j > 4) {
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         return 1
      }
   }
   return 0
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i, j ∈ [0, 3]
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         printf("Bug!!!\n")
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31

0 ≤ R(a, i) ≤ 5 ∧ 0 ≤ R(a, j) ≤ 5
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Motivation Example
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         return 1
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0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

ILP

2 ≤ i ≤ 3 ∧ 2 ≤ j ≤ 3

Index
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Motivation Example

int foo(int i, j) {
   int a[4] = {0, 0, 0, 5}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]
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R(a, i) + R(a, j) > 10

0 ≤ R(a, i) ≤ 5 ∧ 0 ≤ R(a, j) ≤ 5

ILP

UNSAT Pre-check



Motivation Example

int foo(int i, j) {
   int a[4] = {0, 0, 0, 5}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]
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⋀
R(a, i) + R(a, j) > 10

0 ≤ R(a, i) ≤ 5 ∧ 0 ≤ R(a, j) ≤ 5

ILP

Unsatisfiable!!!

UNSAT Pre-check



Motivation Example

int foo(int i, j) {
   int a[4] = {0, 0, 0, 9}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]
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0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4
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Motivation Example

int foo(int i, j) {
   int a[4] = {0, 0, 0, 9}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
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   return 0
}

i, j ∈ [0, 3]
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⋀
R(a, i) + R(a, j) > 10

0 ≤ R(a, i) ≤ 9 ∧ 0 ≤ R(a, j) ≤ 9

UNSAT Pre-check



Motivation Example

int foo(int i, j) {
   int a[4] = {0, 0, 0, 9}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
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}

i, j ∈ [0, 3]
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Motivation Example
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int foo(int i, j) {
   int a[4] = {0, 0, 0, 9}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]

⋀
R(a, i) + R(a, j) > 10

0 ≤ R(a, i) ≤ 9 ∧ 0 ≤ R(a, j) ≤ 9

ILP

Satisfiable???   Not sure!!!

UNSAT Pre-check



Motivation Example
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int foo(int i, j) {
   int a[4] = {0, 0, 0, 9}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]
Axiom elimination



Motivation Example

• Interval info computed in pre-check

• Type info collected in SE (int)
41

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

ILP

2 ≤ i ≤ 3 ∧ 2 ≤ j ≤ 3

int foo(int i, j) {
   int a[4] = {0, 0, 0, 9}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]
Axiom elimination



Motivation Example
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Array 
Memory 
Layout

ai0 ai1 ai2 ai3R(a, i)

R(a, j)

R(a, 0)

R(a, 1)
R(a, 2)

R(a, 3)

0 1 2 3offset

aj0 aj1 aj2 aj3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 9

R(a, 0)

0 0 0 0

0 0 0 0

0
0
0
9

0
0
0
0

ai3

R(a, 2)

R(a, 1)R(a, 3)

ai0 ai1 ai2 ai3

aj0 aj1 aj2 aj3

R(a, i)

R(a, j)

156 axioms → 20 axioms

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4 ∧ R(a, i) + R(a, j) > 10



Evaluation

• Research Questions

• Effectiveness

• Relevance of either optimization

• Comparison with KLEE-Array
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Evaluation

• Implementation

• KLEE with STP

• PPL solver for ILP solving

• Real-world programs as benchmark

• Coreutils programs (62)

• Lexer programs of various grammars (13)
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Results of Effectiveness
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Queries 
without 

KLEE opt

Improves the queries for 46 programs, 160.52% on average



Results of Effectiveness
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Improves the queries for 56 programs, 182.56% on average

Queries 
with 

KLEE opt



Results of Effectiveness

Improves the queries for 56 programs, 182.56% on average
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Queries 
with 

KLEE opt

KLEE's query optimisations 
are especially efficient for 

Coreutils programs



Results of Relevance 
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Opt 2 is more significant, while Opt 1 can generate useful information for Opt 2

Opt 1 - Pre-check
Opt 1+2 - Both

Queries 
with 

KLEE opt



Comparison with KLEE-Array
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Our method increases the number of paths and instructions by 30.31% 
and 40.39%, respectively

With 
KLEE opt



Our Recent Progress

Symbolic 
Executor

Constraint 
Solver
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• Partial Solution 
Prompted Symbolic 
Execution [ASE 20]

• Type and Interval 
Aware Array 
Constraint Solving 
[ISSTA 2021]



Multiplex Symbolic Execution

• Double explosions in symbolic execution
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Multiplex Symbolic Execution

• Generate multiple test inputs by solving once
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Partial Solution



Motivation ExampleMultiplex Symbolic Execution: Exploring Multiple Paths by Solving Once ASE ’20, September 21–25, 2020, Virtual Event, Australia

1 public void start(int x,int y){ // float x, float y
2 if (x + y >= 2) {
3 if(2 * y - x >= 1) {
4 if(2 * x - y >= 0) {
5 System.out.println(�#2�);
6 } else {
7 System.out.println(�#1�);
8 }
9 } else {
10 System.out.println(�#3�);
11 }
12 } else {
13 System.out.println(�#4�);
14 }
15 }

Figure 2: Motivating Example

Figure 3: Branch statements split the input space into dif-
ferent parts corresponding to di�erent paths. The black ar-
rows show how Simplex searches the solution space for �2 =
x + � � 2 ^ 2� � x � 1 ^ 2x � � � 0. The solving procedure
covers three points corresponding to the paths p4, p3 and p2,
respectively.

all the constraints are satis�ed or returns UNSAT. For example, sup-
pose that the path condition is�2 = x+� � 2^2��x � 1^2x�� � 0
and the initial assignment is �0 = {x = 0,� = 0}. Since �0 does not
satisfy x + � � 2 and 2� � x � 1, Simplex changes the assignment
to �1 = {x = 2,� = 0} by the so-called pivot operation [23, 25],
such that x + � � 2 is satis�ed. Now Simplex validates assignment
�1 and �nds that 2� � x � 1 is violated. In the next step, the pivot
operation changes assignment �1 to �2 = {x = 1,� = 1}. Finally,
all the constraints are satis�ed and �2 is already an integer solution.
So, �2 is returned to the DSE engine for generating the input for
path p2. In vanilla DSE, the constraint solver is used as a black box,
only �2 is visible to the DSE engine, and the DSE engine generates
only one test case from one time of constraint solving.

In contrast, MuSE uses the constraint solver in a white-box
manner. As shown in Figure 3, the input space of start (x-� plane)

is split into 7 parts by the three lines corresponding to the three
branch statements. Each of paths p1 ⇠ p3 corresponds to one part
and p4 corresponds to four parts. Simplex algorithm leverages the
linear property of the constraints and smartly explores the solution
space. We can say that Simplex algorithm is exploring the path
space of the program. Since the intermediate assignments �0 and
�1 satisfy subsets of the constraints in �2, they can triggerp4 andp3,
respectively. These intermediate assignments are partial solutions.
DSE can utilize these partial solutions to steer the exploration
along o�-the-path branches on the current path. For example, when
solving the �rst path condition�2,MuSE generates two extra inputs
from the partial solutions �0 and �1, and the executions of these
two inputs triggerp4 andp3, respectively. Hence, by utilizing partial
solutions, MuSE only needs one time of constraint solving to explore
all the paths.

With the support of partial solutions,MuSE maps the constraint
solving procedure to the path exploration in DSE by releasing the
power of constraint solver.2 The key requirement of MuSE is that
the underlying constraint solver can generate partial solutions.
Actually, partial solutions widely exist in the current constraint
solving methods (c.f. Section 3.5). Besides, we will see in the experi-
ments (c.f. Section 4) thatMuSE can generate hundreds of partial
solutions with one time of constraint solving in practice.

3 METHOD
In this section, we �rst show how MuSE works with dynamic sym-
bolic execution framework. Then we elaborate on how to generate
partial solutions in the existing constraint solving algorithms.

3.1 DSE With MuSE
Algorithm 1 shows the procedure of DSE withMuSE. The inputs are
the program P and an initial input seed I0.T stores all the generated
test inputs yet to be executed. The main body of the algorithm is a
repeat-until loop. In the beginning, the for loop selects all the test
inputs in T and execute the program in a concolic manner [18, 38]
(line 5). During the execution, the algorithm can collect the coverage
information, if needed. The function saveUnexploredBranches saves
all the unexplored branches on the current path p into B (line 7).
Then one branch b is selected from B according to a search strategy
(line 9). Here any strategies can be used to prioritize the branches in
B, such as DFS and BFS. Then the function pathCondition generates
the path condition � along b (line 10). The key of our method is that
the algorithm uses an extended constraint solver which returns
a triple (res, solution, partial-solutions) (line 11). When res is SAT,
solution is the target test input that can steer the execution along
b. Then the solution is stored into T for future executions (line 13).
Otherwise, res is UNSAT or UNKNOWN, solution is set as null. We
assume that the underlying constraint solver may generate partial
solutions no matter whether the �nal solution can be found or not.
Therefore, partial solutions are also stored into T , if any (line 16).
So, the DSE procedure can get multiple inputs by invoking the
constraint solver once. Even for an unsatis�able path condition, the

2 Multiplex means reusing a shared scarce resource by sending multiple messages
at once, which is analog to exploring multiple paths by solving once. So we call our
method Multiplex Symbolic Execution (MuSE).
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all the constraints are satis�ed or returns UNSAT. For example, sup-
pose that the path condition is�2 = x+� � 2^2��x � 1^2x�� � 0
and the initial assignment is �0 = {x = 0,� = 0}. Since �0 does not
satisfy x + � � 2 and 2� � x � 1, Simplex changes the assignment
to �1 = {x = 2,� = 0} by the so-called pivot operation [23, 25],
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only �2 is visible to the DSE engine, and the DSE engine generates
only one test case from one time of constraint solving.

In contrast, MuSE uses the constraint solver in a white-box
manner. As shown in Figure 3, the input space of start (x-� plane)

is split into 7 parts by the three lines corresponding to the three
branch statements. Each of paths p1 ⇠ p3 corresponds to one part
and p4 corresponds to four parts. Simplex algorithm leverages the
linear property of the constraints and smartly explores the solution
space. We can say that Simplex algorithm is exploring the path
space of the program. Since the intermediate assignments �0 and
�1 satisfy subsets of the constraints in �2, they can triggerp4 andp3,
respectively. These intermediate assignments are partial solutions.
DSE can utilize these partial solutions to steer the exploration
along o�-the-path branches on the current path. For example, when
solving the �rst path condition�2,MuSE generates two extra inputs
from the partial solutions �0 and �1, and the executions of these
two inputs triggerp4 andp3, respectively. Hence, by utilizing partial
solutions, MuSE only needs one time of constraint solving to explore
all the paths.

With the support of partial solutions,MuSE maps the constraint
solving procedure to the path exploration in DSE by releasing the
power of constraint solver.2 The key requirement of MuSE is that
the underlying constraint solver can generate partial solutions.
Actually, partial solutions widely exist in the current constraint
solving methods (c.f. Section 3.5). Besides, we will see in the experi-
ments (c.f. Section 4) thatMuSE can generate hundreds of partial
solutions with one time of constraint solving in practice.

3 METHOD
In this section, we �rst show how MuSE works with dynamic sym-
bolic execution framework. Then we elaborate on how to generate
partial solutions in the existing constraint solving algorithms.

3.1 DSE With MuSE
Algorithm 1 shows the procedure of DSE withMuSE. The inputs are
the program P and an initial input seed I0.T stores all the generated
test inputs yet to be executed. The main body of the algorithm is a
repeat-until loop. In the beginning, the for loop selects all the test
inputs in T and execute the program in a concolic manner [18, 38]
(line 5). During the execution, the algorithm can collect the coverage
information, if needed. The function saveUnexploredBranches saves
all the unexplored branches on the current path p into B (line 7).
Then one branch b is selected from B according to a search strategy
(line 9). Here any strategies can be used to prioritize the branches in
B, such as DFS and BFS. Then the function pathCondition generates
the path condition � along b (line 10). The key of our method is that
the algorithm uses an extended constraint solver which returns
a triple (res, solution, partial-solutions) (line 11). When res is SAT,
solution is the target test input that can steer the execution along
b. Then the solution is stored into T for future executions (line 13).
Otherwise, res is UNSAT or UNKNOWN, solution is set as null. We
assume that the underlying constraint solver may generate partial
solutions no matter whether the �nal solution can be found or not.
Therefore, partial solutions are also stored into T , if any (line 16).
So, the DSE procedure can get multiple inputs by invoking the
constraint solver once. Even for an unsatis�able path condition, the

2 Multiplex means reusing a shared scarce resource by sending multiple messages
at once, which is analog to exploring multiple paths by solving once. So we call our
method Multiplex Symbolic Execution (MuSE).
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Figure 1: Double explosions in symbolic execution proce-
dure. MuSE generates multiple test inputs from partial so-
lutions with only one time of constraint solving. Partial so-
lutions can be used to trigger o�-the-path branches on the
current path.

obstruct the application of symbolic execution to larger real-world
programs.

Symbolic execution explores the path space with a search strat-
egy, such as depth-�rst search (DFS) and breadth-�rst search (BFS).
The underlying constraint solver also employs an internal search-
ing procedure in the solution space to decide the satis�ability of
path conditions. Essentially, both of the path space and the solution
space represent P’s input space SI . The conditions of P’s branch
statements split SI into di�erent parts. Each part can be represented
by a path. For a path condition PC(b) = ”n

i=1Ci , the solution space
SPC contains all the possible assignments to the input variables in
PC(b). When solving PC(b), the constraint solver searches SPC , and
hence searches SI . During this searching procedure, the solver may
search the input space corresponding to other paths of P. However,
the solver only returns the �nal solution satisfying PC(b), if SAT,
or returns UNSAT. Therefore, SI is doubly searched in the stack of
symbolic execution by the path space exploration and the under-
lying constraint solver. It is desirable to unify the two searching
procedures to improve the scalability.

In this paper, we propose Multiplex Symbolic Execution (MuSE)
towards eliminating the redundant searching in dynamic symbolic
execution (DSE). The principle of our method is that we leverage
the constraint solver to search the path space directly via generating
multiple test inputs in one time of solving. For a path condition
PC(b) = ”n

i=1Ci , we call a point � in the solution space SPC a
partial solution if � satis�es a subset of the constraints in PC(b). As
shown in Figure 1, the solver may touch plenty of partial solutions
before �nding a solution or concluding the unsatis�ability. We can
use partial solutions as the test inputs for exploring P’s other paths.
In this way, MuSE maps the constraint solving procedure to the
path space exploration, and reduces the redundant searching to
boost the whole symbolic execution procedure.

Partial solutions exist in a wide range of constraint solving algo-
rithms. We have instantiated the idea of MuSE to three constraint
solving methods to generate partial solutions: i) Simplex-based
quanti�er-free linear integer arithmetic (QF_LIA) constraint solving

[13, 25], ii) abstraction re�nement based quanti�er-free array and
bit-vector (QF_ABV) constraint solving [16], and iii) optimization-
based �oating-point constraint solving [15, 40]. Besides, we have
implemented MuSE on two DSE engines based on KLEE [5] and
Symbolic PathFinder (SPF) [33] for C and Java programs, respec-
tively. We have applied our prototypes to real-world C and Java
programs. The evaluation results indicate the e�ectiveness and
e�ciency of MuSE.

The main contributions of this paper are:
• We proposeMuSE to utilize the partial solutions during con-
straint solving to generate multiple test inputs for exploring
multiple paths by solving once.

• We have instantiated the idea of partial solution to three
constraint solving methods and implemented MuSE on two
DSE engines for C and Java programs.

• We have carried out extensive experiments on real-world C
and Java programs. The experimental results indicate that
MuSE achieves one or two orders of magnitude speedup on
the three constraint solving methods for reaching the same
code coverage.

We organize the remainders of this paper as follows. Section
2 motivatesMuSE by a Simplex-based solving method. Section 3
presents MuSE and its instantiations on three solving methods.
Section 4 explains the implementation of MuSE and the experi-
ments on real-world benchmarks. Section 5 reviews the related
work. Section 6 concludes the paper.

2 MOTIVATING EXAMPLE
In this section, we motivate the principle of MuSE. Figure 2 shows
a Java function start that receives two parameters and has four
paths. In each path, the program prints a di�erent number. We call
these four path as p1 ⇠ p4, respectively. Now we use DSE to explore
the path space. Suppose that the initial input is {x = 1,� = 3}.
Then the �rst path is p1 that covers the lines {2, 3, 4, 6, 7}. The path
condition of p1 is �1 = x + � � 2 ^ 2� � x � 1 ^ 2x � � < 0. If
we use DFS searching strategy, the last branch is �ipped. The new
path condition �2 = x + � � 2 ^ 2� � x � 1 ^ 2x � � � 0 is feed
into o�-the-shell constraint solver. Suppose that the solution of
�2 is {x = 1,� = 1}, then the second path is p2 that covers the
lines {2, 3, 4, 5}. Similarly, p3 and p4 will be explored. In total, DSE
invokes the constraint solver three times for p2 ⇠ p4.

Since all the constraints are linear arithmetic, we suppose that
the solver uses the Simplex-based QF_LIA theory solving algorithm
[23, 25]. The algorithm �rst considers all the integer variables in
the constraints as real variables and uses Simplex-based linear
real arithmetic solving algorithm to solve the constraints. If there
is no solution, the constraints are unsatis�able. If there exists a
solution and the values in the solution are already integers, the
algorithm returns the solution; otherwise, the algorithm adds the
integer requirement constraints gradually and employs Simplex
procedures again to �nd the integer solution.

The Simplex algorithm maintains an assignment � to store the
values of variables1. If the assignment does not satisfy the con-
straints, the algorithm changes the assignment so that at least one
unsatis�ed constraint becomes true. This procedure continues until
1Details of Simplex algorithm is discussed in Section 3.2.
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1 public void start(int x,int y){ // float x, float y
2 if (x + y >= 2) {
3 if(2 * y - x >= 1) {
4 if(2 * x - y >= 0) {
5 System.out.println(�#2�);
6 } else {
7 System.out.println(�#1�);
8 }
9 } else {
10 System.out.println(�#3�);
11 }
12 } else {
13 System.out.println(�#4�);
14 }
15 }

Figure 2: Motivating Example

Figure 3: Branch statements split the input space into dif-
ferent parts corresponding to di�erent paths. The black ar-
rows show how Simplex searches the solution space for �2 =
x + � � 2 ^ 2� � x � 1 ^ 2x � � � 0. The solving procedure
covers three points corresponding to the paths p4, p3 and p2,
respectively.

all the constraints are satis�ed or returns UNSAT. For example, sup-
pose that the path condition is�2 = x+� � 2^2��x � 1^2x�� � 0
and the initial assignment is �0 = {x = 0,� = 0}. Since �0 does not
satisfy x + � � 2 and 2� � x � 1, Simplex changes the assignment
to �1 = {x = 2,� = 0} by the so-called pivot operation [23, 25],
such that x + � � 2 is satis�ed. Now Simplex validates assignment
�1 and �nds that 2� � x � 1 is violated. In the next step, the pivot
operation changes assignment �1 to �2 = {x = 1,� = 1}. Finally,
all the constraints are satis�ed and �2 is already an integer solution.
So, �2 is returned to the DSE engine for generating the input for
path p2. In vanilla DSE, the constraint solver is used as a black box,
only �2 is visible to the DSE engine, and the DSE engine generates
only one test case from one time of constraint solving.

In contrast, MuSE uses the constraint solver in a white-box
manner. As shown in Figure 3, the input space of start (x-� plane)

is split into 7 parts by the three lines corresponding to the three
branch statements. Each of paths p1 ⇠ p3 corresponds to one part
and p4 corresponds to four parts. Simplex algorithm leverages the
linear property of the constraints and smartly explores the solution
space. We can say that Simplex algorithm is exploring the path
space of the program. Since the intermediate assignments �0 and
�1 satisfy subsets of the constraints in �2, they can triggerp4 andp3,
respectively. These intermediate assignments are partial solutions.
DSE can utilize these partial solutions to steer the exploration
along o�-the-path branches on the current path. For example, when
solving the �rst path condition�2,MuSE generates two extra inputs
from the partial solutions �0 and �1, and the executions of these
two inputs triggerp4 andp3, respectively. Hence, by utilizing partial
solutions, MuSE only needs one time of constraint solving to explore
all the paths.

With the support of partial solutions,MuSE maps the constraint
solving procedure to the path exploration in DSE by releasing the
power of constraint solver.2 The key requirement of MuSE is that
the underlying constraint solver can generate partial solutions.
Actually, partial solutions widely exist in the current constraint
solving methods (c.f. Section 3.5). Besides, we will see in the experi-
ments (c.f. Section 4) thatMuSE can generate hundreds of partial
solutions with one time of constraint solving in practice.

3 METHOD
In this section, we �rst show how MuSE works with dynamic sym-
bolic execution framework. Then we elaborate on how to generate
partial solutions in the existing constraint solving algorithms.

3.1 DSE With MuSE
Algorithm 1 shows the procedure of DSE withMuSE. The inputs are
the program P and an initial input seed I0.T stores all the generated
test inputs yet to be executed. The main body of the algorithm is a
repeat-until loop. In the beginning, the for loop selects all the test
inputs in T and execute the program in a concolic manner [18, 38]
(line 5). During the execution, the algorithm can collect the coverage
information, if needed. The function saveUnexploredBranches saves
all the unexplored branches on the current path p into B (line 7).
Then one branch b is selected from B according to a search strategy
(line 9). Here any strategies can be used to prioritize the branches in
B, such as DFS and BFS. Then the function pathCondition generates
the path condition � along b (line 10). The key of our method is that
the algorithm uses an extended constraint solver which returns
a triple (res, solution, partial-solutions) (line 11). When res is SAT,
solution is the target test input that can steer the execution along
b. Then the solution is stored into T for future executions (line 13).
Otherwise, res is UNSAT or UNKNOWN, solution is set as null. We
assume that the underlying constraint solver may generate partial
solutions no matter whether the �nal solution can be found or not.
Therefore, partial solutions are also stored into T , if any (line 16).
So, the DSE procedure can get multiple inputs by invoking the
constraint solver once. Even for an unsatis�able path condition, the

2 Multiplex means reusing a shared scarce resource by sending multiple messages
at once, which is analog to exploring multiple paths by solving once. So we call our
method Multiplex Symbolic Execution (MuSE).
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Figure 1: Double explosions in symbolic execution proce-
dure. MuSE generates multiple test inputs from partial so-
lutions with only one time of constraint solving. Partial so-
lutions can be used to trigger o�-the-path branches on the
current path.

obstruct the application of symbolic execution to larger real-world
programs.

Symbolic execution explores the path space with a search strat-
egy, such as depth-�rst search (DFS) and breadth-�rst search (BFS).
The underlying constraint solver also employs an internal search-
ing procedure in the solution space to decide the satis�ability of
path conditions. Essentially, both of the path space and the solution
space represent P’s input space SI . The conditions of P’s branch
statements split SI into di�erent parts. Each part can be represented
by a path. For a path condition PC(b) = ”n

i=1Ci , the solution space
SPC contains all the possible assignments to the input variables in
PC(b). When solving PC(b), the constraint solver searches SPC , and
hence searches SI . During this searching procedure, the solver may
search the input space corresponding to other paths of P. However,
the solver only returns the �nal solution satisfying PC(b), if SAT,
or returns UNSAT. Therefore, SI is doubly searched in the stack of
symbolic execution by the path space exploration and the under-
lying constraint solver. It is desirable to unify the two searching
procedures to improve the scalability.

In this paper, we propose Multiplex Symbolic Execution (MuSE)
towards eliminating the redundant searching in dynamic symbolic
execution (DSE). The principle of our method is that we leverage
the constraint solver to search the path space directly via generating
multiple test inputs in one time of solving. For a path condition
PC(b) = ”n

i=1Ci , we call a point � in the solution space SPC a
partial solution if � satis�es a subset of the constraints in PC(b). As
shown in Figure 1, the solver may touch plenty of partial solutions
before �nding a solution or concluding the unsatis�ability. We can
use partial solutions as the test inputs for exploring P’s other paths.
In this way, MuSE maps the constraint solving procedure to the
path space exploration, and reduces the redundant searching to
boost the whole symbolic execution procedure.

Partial solutions exist in a wide range of constraint solving algo-
rithms. We have instantiated the idea of MuSE to three constraint
solving methods to generate partial solutions: i) Simplex-based
quanti�er-free linear integer arithmetic (QF_LIA) constraint solving

[13, 25], ii) abstraction re�nement based quanti�er-free array and
bit-vector (QF_ABV) constraint solving [16], and iii) optimization-
based �oating-point constraint solving [15, 40]. Besides, we have
implemented MuSE on two DSE engines based on KLEE [5] and
Symbolic PathFinder (SPF) [33] for C and Java programs, respec-
tively. We have applied our prototypes to real-world C and Java
programs. The evaluation results indicate the e�ectiveness and
e�ciency of MuSE.

The main contributions of this paper are:
• We proposeMuSE to utilize the partial solutions during con-
straint solving to generate multiple test inputs for exploring
multiple paths by solving once.

• We have instantiated the idea of partial solution to three
constraint solving methods and implemented MuSE on two
DSE engines for C and Java programs.

• We have carried out extensive experiments on real-world C
and Java programs. The experimental results indicate that
MuSE achieves one or two orders of magnitude speedup on
the three constraint solving methods for reaching the same
code coverage.

We organize the remainders of this paper as follows. Section
2 motivatesMuSE by a Simplex-based solving method. Section 3
presents MuSE and its instantiations on three solving methods.
Section 4 explains the implementation of MuSE and the experi-
ments on real-world benchmarks. Section 5 reviews the related
work. Section 6 concludes the paper.

2 MOTIVATING EXAMPLE
In this section, we motivate the principle of MuSE. Figure 2 shows
a Java function start that receives two parameters and has four
paths. In each path, the program prints a di�erent number. We call
these four path as p1 ⇠ p4, respectively. Now we use DSE to explore
the path space. Suppose that the initial input is {x = 1,� = 3}.
Then the �rst path is p1 that covers the lines {2, 3, 4, 6, 7}. The path
condition of p1 is �1 = x + � � 2 ^ 2� � x � 1 ^ 2x � � < 0. If
we use DFS searching strategy, the last branch is �ipped. The new
path condition �2 = x + � � 2 ^ 2� � x � 1 ^ 2x � � � 0 is feed
into o�-the-shell constraint solver. Suppose that the solution of
�2 is {x = 1,� = 1}, then the second path is p2 that covers the
lines {2, 3, 4, 5}. Similarly, p3 and p4 will be explored. In total, DSE
invokes the constraint solver three times for p2 ⇠ p4.

Since all the constraints are linear arithmetic, we suppose that
the solver uses the Simplex-based QF_LIA theory solving algorithm
[23, 25]. The algorithm �rst considers all the integer variables in
the constraints as real variables and uses Simplex-based linear
real arithmetic solving algorithm to solve the constraints. If there
is no solution, the constraints are unsatis�able. If there exists a
solution and the values in the solution are already integers, the
algorithm returns the solution; otherwise, the algorithm adds the
integer requirement constraints gradually and employs Simplex
procedures again to �nd the integer solution.

The Simplex algorithm maintains an assignment � to store the
values of variables1. If the assignment does not satisfy the con-
straints, the algorithm changes the assignment so that at least one
unsatis�ed constraint becomes true. This procedure continues until
1Details of Simplex algorithm is discussed in Section 3.2.
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1 public void start(int x,int y){ // float x, float y
2 if (x + y >= 2) {
3 if(2 * y - x >= 1) {
4 if(2 * x - y >= 0) {
5 System.out.println(�#2�);
6 } else {
7 System.out.println(�#1�);
8 }
9 } else {
10 System.out.println(�#3�);
11 }
12 } else {
13 System.out.println(�#4�);
14 }
15 }

Figure 2: Motivating Example

Figure 3: Branch statements split the input space into dif-
ferent parts corresponding to di�erent paths. The black ar-
rows show how Simplex searches the solution space for �2 =
x + � � 2 ^ 2� � x � 1 ^ 2x � � � 0. The solving procedure
covers three points corresponding to the paths p4, p3 and p2,
respectively.

all the constraints are satis�ed or returns UNSAT. For example, sup-
pose that the path condition is�2 = x+� � 2^2��x � 1^2x�� � 0
and the initial assignment is �0 = {x = 0,� = 0}. Since �0 does not
satisfy x + � � 2 and 2� � x � 1, Simplex changes the assignment
to �1 = {x = 2,� = 0} by the so-called pivot operation [23, 25],
such that x + � � 2 is satis�ed. Now Simplex validates assignment
�1 and �nds that 2� � x � 1 is violated. In the next step, the pivot
operation changes assignment �1 to �2 = {x = 1,� = 1}. Finally,
all the constraints are satis�ed and �2 is already an integer solution.
So, �2 is returned to the DSE engine for generating the input for
path p2. In vanilla DSE, the constraint solver is used as a black box,
only �2 is visible to the DSE engine, and the DSE engine generates
only one test case from one time of constraint solving.

In contrast, MuSE uses the constraint solver in a white-box
manner. As shown in Figure 3, the input space of start (x-� plane)

is split into 7 parts by the three lines corresponding to the three
branch statements. Each of paths p1 ⇠ p3 corresponds to one part
and p4 corresponds to four parts. Simplex algorithm leverages the
linear property of the constraints and smartly explores the solution
space. We can say that Simplex algorithm is exploring the path
space of the program. Since the intermediate assignments �0 and
�1 satisfy subsets of the constraints in �2, they can triggerp4 andp3,
respectively. These intermediate assignments are partial solutions.
DSE can utilize these partial solutions to steer the exploration
along o�-the-path branches on the current path. For example, when
solving the �rst path condition�2,MuSE generates two extra inputs
from the partial solutions �0 and �1, and the executions of these
two inputs triggerp4 andp3, respectively. Hence, by utilizing partial
solutions, MuSE only needs one time of constraint solving to explore
all the paths.

With the support of partial solutions,MuSE maps the constraint
solving procedure to the path exploration in DSE by releasing the
power of constraint solver.2 The key requirement of MuSE is that
the underlying constraint solver can generate partial solutions.
Actually, partial solutions widely exist in the current constraint
solving methods (c.f. Section 3.5). Besides, we will see in the experi-
ments (c.f. Section 4) thatMuSE can generate hundreds of partial
solutions with one time of constraint solving in practice.

3 METHOD
In this section, we �rst show how MuSE works with dynamic sym-
bolic execution framework. Then we elaborate on how to generate
partial solutions in the existing constraint solving algorithms.

3.1 DSE With MuSE
Algorithm 1 shows the procedure of DSE withMuSE. The inputs are
the program P and an initial input seed I0.T stores all the generated
test inputs yet to be executed. The main body of the algorithm is a
repeat-until loop. In the beginning, the for loop selects all the test
inputs in T and execute the program in a concolic manner [18, 38]
(line 5). During the execution, the algorithm can collect the coverage
information, if needed. The function saveUnexploredBranches saves
all the unexplored branches on the current path p into B (line 7).
Then one branch b is selected from B according to a search strategy
(line 9). Here any strategies can be used to prioritize the branches in
B, such as DFS and BFS. Then the function pathCondition generates
the path condition � along b (line 10). The key of our method is that
the algorithm uses an extended constraint solver which returns
a triple (res, solution, partial-solutions) (line 11). When res is SAT,
solution is the target test input that can steer the execution along
b. Then the solution is stored into T for future executions (line 13).
Otherwise, res is UNSAT or UNKNOWN, solution is set as null. We
assume that the underlying constraint solver may generate partial
solutions no matter whether the �nal solution can be found or not.
Therefore, partial solutions are also stored into T , if any (line 16).
So, the DSE procedure can get multiple inputs by invoking the
constraint solver once. Even for an unsatis�able path condition, the

2 Multiplex means reusing a shared scarce resource by sending multiple messages
at once, which is analog to exploring multiple paths by solving once. So we call our
method Multiplex Symbolic Execution (MuSE).
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Figure 1: Double explosions in symbolic execution proce-
dure. MuSE generates multiple test inputs from partial so-
lutions with only one time of constraint solving. Partial so-
lutions can be used to trigger o�-the-path branches on the
current path.

obstruct the application of symbolic execution to larger real-world
programs.

Symbolic execution explores the path space with a search strat-
egy, such as depth-�rst search (DFS) and breadth-�rst search (BFS).
The underlying constraint solver also employs an internal search-
ing procedure in the solution space to decide the satis�ability of
path conditions. Essentially, both of the path space and the solution
space represent P’s input space SI . The conditions of P’s branch
statements split SI into di�erent parts. Each part can be represented
by a path. For a path condition PC(b) = ”n

i=1Ci , the solution space
SPC contains all the possible assignments to the input variables in
PC(b). When solving PC(b), the constraint solver searches SPC , and
hence searches SI . During this searching procedure, the solver may
search the input space corresponding to other paths of P. However,
the solver only returns the �nal solution satisfying PC(b), if SAT,
or returns UNSAT. Therefore, SI is doubly searched in the stack of
symbolic execution by the path space exploration and the under-
lying constraint solver. It is desirable to unify the two searching
procedures to improve the scalability.

In this paper, we propose Multiplex Symbolic Execution (MuSE)
towards eliminating the redundant searching in dynamic symbolic
execution (DSE). The principle of our method is that we leverage
the constraint solver to search the path space directly via generating
multiple test inputs in one time of solving. For a path condition
PC(b) = ”n

i=1Ci , we call a point � in the solution space SPC a
partial solution if � satis�es a subset of the constraints in PC(b). As
shown in Figure 1, the solver may touch plenty of partial solutions
before �nding a solution or concluding the unsatis�ability. We can
use partial solutions as the test inputs for exploring P’s other paths.
In this way, MuSE maps the constraint solving procedure to the
path space exploration, and reduces the redundant searching to
boost the whole symbolic execution procedure.

Partial solutions exist in a wide range of constraint solving algo-
rithms. We have instantiated the idea of MuSE to three constraint
solving methods to generate partial solutions: i) Simplex-based
quanti�er-free linear integer arithmetic (QF_LIA) constraint solving

[13, 25], ii) abstraction re�nement based quanti�er-free array and
bit-vector (QF_ABV) constraint solving [16], and iii) optimization-
based �oating-point constraint solving [15, 40]. Besides, we have
implemented MuSE on two DSE engines based on KLEE [5] and
Symbolic PathFinder (SPF) [33] for C and Java programs, respec-
tively. We have applied our prototypes to real-world C and Java
programs. The evaluation results indicate the e�ectiveness and
e�ciency of MuSE.

The main contributions of this paper are:
• We proposeMuSE to utilize the partial solutions during con-
straint solving to generate multiple test inputs for exploring
multiple paths by solving once.

• We have instantiated the idea of partial solution to three
constraint solving methods and implemented MuSE on two
DSE engines for C and Java programs.

• We have carried out extensive experiments on real-world C
and Java programs. The experimental results indicate that
MuSE achieves one or two orders of magnitude speedup on
the three constraint solving methods for reaching the same
code coverage.

We organize the remainders of this paper as follows. Section
2 motivatesMuSE by a Simplex-based solving method. Section 3
presents MuSE and its instantiations on three solving methods.
Section 4 explains the implementation of MuSE and the experi-
ments on real-world benchmarks. Section 5 reviews the related
work. Section 6 concludes the paper.

2 MOTIVATING EXAMPLE
In this section, we motivate the principle of MuSE. Figure 2 shows
a Java function start that receives two parameters and has four
paths. In each path, the program prints a di�erent number. We call
these four path as p1 ⇠ p4, respectively. Now we use DSE to explore
the path space. Suppose that the initial input is {x = 1,� = 3}.
Then the �rst path is p1 that covers the lines {2, 3, 4, 6, 7}. The path
condition of p1 is �1 = x + � � 2 ^ 2� � x � 1 ^ 2x � � < 0. If
we use DFS searching strategy, the last branch is �ipped. The new
path condition �2 = x + � � 2 ^ 2� � x � 1 ^ 2x � � � 0 is feed
into o�-the-shell constraint solver. Suppose that the solution of
�2 is {x = 1,� = 1}, then the second path is p2 that covers the
lines {2, 3, 4, 5}. Similarly, p3 and p4 will be explored. In total, DSE
invokes the constraint solver three times for p2 ⇠ p4.

Since all the constraints are linear arithmetic, we suppose that
the solver uses the Simplex-based QF_LIA theory solving algorithm
[23, 25]. The algorithm �rst considers all the integer variables in
the constraints as real variables and uses Simplex-based linear
real arithmetic solving algorithm to solve the constraints. If there
is no solution, the constraints are unsatis�able. If there exists a
solution and the values in the solution are already integers, the
algorithm returns the solution; otherwise, the algorithm adds the
integer requirement constraints gradually and employs Simplex
procedures again to �nd the integer solution.

The Simplex algorithm maintains an assignment � to store the
values of variables1. If the assignment does not satisfy the con-
straints, the algorithm changes the assignment so that at least one
unsatis�ed constraint becomes true. This procedure continues until
1Details of Simplex algorithm is discussed in Section 3.2.
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I={I0}

concolic(I)

generate PC

I=solve(PC)

exit()

S={I0}

concolic(S)

generate PC

{I, partial solutions}
=solve(PC)

S={I, partial solutions}

exit()

vanilla symbolic execution MuSE

11

Vanilla Symbolic Execution 
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Utilize partial solutions for generating multiple tests by 
solving once during DSE
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Partial Solutions are Ubiquitous 

• CDCL/DPLL framework for SAT

• DPLL(T) framework for SMT

• JFS: coverage-guided fuzzing for FP constraints

• …
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Partial Solution Support

• What we have done

• QF_LIA: Simplex-based

• QF_ABV: CEGAR-based

• Optimization-based floating-point solving
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Evaluation - Implementation

• Solvers with partial solution support

• QF_LIA on Z3

• QF_ABV on STP

• Optimization-based floating-point solving 
(Simulated annealing-based Java implementation)

• C programs: Concolic KLEE + QF_ABV(STP)

• Java programs: JFuzz + QF_LIA/QF_FP
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Evaluation - Result (1/3)

• Simplex-baed QF_LIA solving

61

MuSE can cover more instructions
D(B)FS+P: D(B)FS + partial solution 
#T: the number of test inputs 
#NI: the number of new instructions 
covered after the first path



Evaluation - Result (2/3)

• CEGAR-based QF_ABV

D(B)FS+P: D(B)FS + partial solution 
#PS: the number of partial solutions 
COV: LLVM code coverage

62

MuSE can achieve higher coverage



Evaluation - Result (3/3)

• Optimization-based Floating-point Solving 

D(B)FS+P: D(B)FS + partial solution 
#T: the number of test inputs 
#NI: the number of new instructions 
covered after the first path

63

MuSE can cover more instructions



Follow-up Work
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Partial Solution Based Constraint Solving Cache in Symbolic Execution FSE’24, July 15–19, 2024, Porto de Galinhas

1 // In total , foo has 4 paths.
2 int foo(int8_t a, int8_t b) {
3 if(a + b >= 10) {
4 if(2 * b - a >= 5) {
5 if(2 * a - b >= 15) {
6 printf(�Path #1\n�);
7 return 1;
8 }
9 }
10 }
11
12 printf(�Path #2 -#4\n�);
13 return 0;
14 }

(a) A small example program

1
v = {a � x, b � y},
� = true

pc : if (a + b � 10)

2
v = {a � x, b � y},
� = x + y � 10

pc : if (2 * b � a � 5)
3

v = {a � x, b � y},
� = x + y < 10

pc : return 0

x + y � 10 x + y < 10

4
v = {a � x, b � y},
� = x + y � 10 � 2y � x � 5

pc : if (2 * a � b � 15)

2y � x � 5

5
v = {a � x, b � y},
� = x + y � 10 � 2y � x < 5

pc : return 0

2y � x < 5

6
v = {a � x, b � y},
� = x + y � 10 � 2y � x � 5 � 2x � y � 15

pc : return 1
7

v = {a � x, b � y},
� = x + y � 10 � 2y � x � 5 � 2x � y < 15

pc : return 0

2x � y � 15 2x � y < 15

1

2

[3]* 4*

[5]*

6*

(b) Symbolic execution tree of foo.

Fig. 1. The example program and its symbolic execution tree. Without caching, the program requires 6 rounds
of constraint solving. With the state-of-the-art caching technique, the 3rd and 5th (in bracket) times of solving
can be saved under DFS strategy. With our partial solution-based caching method, the 3rd to 6th (noted with
*) times of solving can be saved.

[12]). The experimental results on representative benchmark programs indicate the e�ectiveness of
our caching method. In summary, the main contributions of this paper are as follows.

• We propose a partial solution-based caching method to improve caching’s e�ectiveness in
symbolic execution. Our method is general and orthogonal to existing search heuristics.

• We instantiated our method for two SMT solvers and two state-of-the-art symbolic executors.
• We have carried out extensive experiments to evaluate our method. The experimental results
demonstrate the generality of our method. Our cachingmethod achieves the speedups ranging
from 1.07x to 2.3x for exploring the same amount of paths.

2 ILLUSTRATION
This section illustrates how our approach works with a small program shown in Figure 1a (denoted
by P). The function foo takes two 8-bit signed integer inputs a and b and returns an integer.

2.1 Symbolic Execution
The symbolic execution of P starts by assigning symbolic values G and ~ to inputs a and b,
respectively. Then, the state space of P is explored in a state-forking manner. Assuming that we
use the depth-�rst search (DFS) strategy and execute the true branch �rst, the resulting symbolic
execution tree is shown in Figure 1b. Each node in the �gure represents a symbolic state, and
the gray block attached to the left shows its ID. The symbolic store, path condition, and program
counter are denoted by E , c , and ?2 , respectively. The numbers in red attached to the edges indicate
the order of constraint solving.

In total, symbolic execution needs to decide the satis�ability of the following six path constraints:
G + ~ � 10 (1)
G + ~ � 10 ^ 2 ⇥ ~ � G � 5 (2)
G + ~ � 10 ^ 2 ⇥ ~ � G � 5 ^ 2 ⇥ G � ~ � 15 (3)
G + ~ � 10 ^ 2 ⇥ ~ � G � 5 ^ 2 ⇥ G � ~ < 15 (4)
G + ~ � 10 ^ 2 ⇥ ~ � G < 5 (5)
G + ~ < 10 (6)

3

Partial solution-based constraint solving cache for symbolic execution
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Table 2. Detailed results of QF_ABV Experiment. For the convenience of readers, our method’s best results
are presented in bold fonts.

Programs Mode DFS BFS RCN
#Paths CHR TO(s) #Paths CHR TO(s) #Paths CHR TO(s)

apr
P 107(33.8%) 0.847 1.24 84(10.5%) 0.703 0.77 87(29.9%) 0.765 0.87
O 80 0.793 0.0 76 0.671 0.0 67 0.721 0.0

cmark
P 1790(-7.3%) 0.485 213.49 1569(3.8%) 0.528 28.84 2569(5.9%) 0.576 28.01
O 1931 0.463 0.0 1511 0.502 0.0 2425 0.546 0.0

fribidi
P 336(23.1%) 0.924 9.75 8427(24.3%) 0.975 6.09 6925(2.2%) 0.971 4.19
O 273 0.909 0.0 6782 0.966 0.0 6773 0.966 0.0

gas
P 312(2.3%) 0.888 6.03 1541(12.2%) 0.895 1.09 2563(-13.3%) 0.906 0.9
O 305 0.876 0.0 1373 0.87 0.0 2955 0.906 0.0

json-c
P 409(3.0%) 0.565 65.39 569(28.7%) 0.557 71.71 492(41.8%) 0.556 67.1
O 397 0.35 0.0 442 0.236 0.0 347 0.209 0.0

libinjection
P 1007(-15.7%) 0.936 1.87 27373(1.7%) 0.936 4.3 16088(1.5%) 0.928 2.77
O 1194 0.946 0.0 26918 0.939 0.0 15856 0.924 0.0

libtommath
P 38006(5.1%) 0.933 24.62 27214(33.7%) 0.923 8.36 42238(98.7%) 0.96 6.63
O 36151 0.915 0.0 20347 0.917 0.0 21260 0.964 0.0

m4
P 14938(-26.4%) 0.965 124.29 75509(1.2%) 0.996 131.61 44140(31.4%) 0.99 129.03
O 20304 0.969 0.0 74645 0.995 0.0 33586 0.983 0.0

discount
P 86474(24.0%) 0.974 25.74 222984(9.8%) 0.999 3.68 274828(4.3%) 0.998 2.62
O 69764 0.972 0.0 203125 0.998 0.0 263373 0.997 0.0

pacparser
P 36(2.9%) 0.663 12.02 3668(5.9%) 0.96 5.13 5655(9.9%) 0.971 6.95
O 35 0.641 0.0 3465 0.95 0.0 5145 0.96 0.0

ptx
P 3312(28.4%) 0.985 10.67 151(-5.0%) 0.696 63.74 446(-6.3%) 0.778 29.74
O 2579 0.982 0.0 159 0.682 0.0 476 0.779 0.0

sha1-cd
P 80(9.6%) 0.596 38.26 1772(68.0%) 0.591 266.96 3180(34.3%) 0.568 551.15
O 73 0.52 0.0 1055 0.525 0.0 2367 0.52 0.0

smaz
P 52(26.8%) 0.622 34.65 154(51.0%) 0.628 17.81 106(89.3%) 0.619 19.84
O 41 0.601 0.0 102 0.564 0.0 56 0.58 0.0

sqlite3
P 42(-10.6%) 0.85 8.68 225(-6.2%) 0.823 20.96 173(8.8%) 0.685 11.95
O 47 0.839 0.0 240 0.801 0.0 159 0.581 0.0

sundown
P 1524(6.6%) 0.792 74.05 16244(0.0%) 0.84 50.07 26906(7.9%) 0.883 46.97
O 1430 0.723 0.0 16241 0.831 0.0 24929 0.87 0.0
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(c) Experiment 3

Fig. 2. Path exploration trends in three experiments

paths by 7.0%, 16.0% and 23.1% under DFS, BFS, and RCN, respectively. The limited improvement
observed in our method during this experiment is attributed to KLEE’s counterexample cache
optimizations, which are highly e�ective for QF_ABV solving, particularly in the case of satis�able
queries. Indeed, the counterexample cache primarily operates at the level of satisfying assignments
[25], making it more suitable for con�rming the satis�ability of queries. As a result, queries that
do not hit the cache are more likely to be unsatis�able, which is not the target of our method.
For example, using the vanilla mode O, the average ratios of unsatis�able queries among those
reaching the solver are 0.7, 0.6 and 0.61 under DFS, BFS and RCN, respectively.

We also evaluated the e�ciency achieved by our method. Figure 2a shows the trend of explored
paths during symbolic execution. The X-axis represents the analysis time in minutes, while the

14

Utilize partial solutions to enrich solving cache and improve cache hit



Discussion

• Challenges

• How to unify the explorations of the path 
space and the solution space?

• How to sample the solving procedure?

• …
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Summary

Our Argument

Symbolic 
Executor

Constraint 
Solver

Tight 
Coupling

While-box 
Usage

Our Work’s Target

13

Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Path explosion

Decision Procedures An Algorithmic Point of View, Second Edition, 2016

• Partial Solution Promoted Symbolic 
Execution [ASE’20]
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• Type and Interval Aware Array 
Constraint Solving [ISSTA'21]
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