Find your Path — SOK Path
exploration (In progress)

Dairo de Ruck
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Path Exploration

- A module of the symbolic engine
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Path Exploration

» Algorithmic choice
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Path Exploration — working example

» How to detect bug in the red
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Path Exploration

» Looking at a real Control Flow
Graph

> This choice has a major

Impact



Path Exploration STG RT

CFG was too big for
PowerPoint to handle... "
Use your imagination ©
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Path Exploration

» “Optimal” symbolic execution:

» Explore all possible paths

» Find EVERY vulnerability
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Path Exploration

» "Optimal” symbolic execut
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Path Exploration

» ...An Optimal world does not exist:
» Memory is finite
» Time IS money

» World peace is yet to be achieved
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Path Exploration

» ... An Optimal world does not exist, so:

» Find as many “targets” as possible within a reasonable time
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Path Exploration

> ... An Optimal world does not exist, so:

» Find as much “targets” as possible within a reasonable time

Global view [ ——
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SOK
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SOK

)

Various characteristics defined

» Qverarching selection strategies

» Use of Search Space Optimizations (SSO)
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Path Exploration

> How to execute path exploration in real life?
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Path Exploration

> How to execute path exploration in real life?

» “Blind”

» Informed (in any way)
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Path Exploration

> How to execute path exploration in real life?
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Path Exploration - Features

» Relate to the SUT (subject under test)

» .. orto the algorithm in use
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Path Exploration - Features

> Relate to the SUT

» (CFG, node connectivity, loops, branch hit probabilities,...)

» .. or to the algorithm in use
» (DFS, BFS, RNG element, lowest path costs, ...)
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Path Exploration - Features

» More advanced:

» Potential presence of bugs
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Path Exploration - Features

» More advanced:

» Potential presence of bugs
» Certain presence of bugs

» Insertion of domain knowledge
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Path Exploration - Features

> More advanced:
» Potential presence of bugs
» Certain presence of bugs

» Insertion of domain knowledge

» Preprocessing SAST/DAST step

)) - = m
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m Distance
CFG spectra

m Constraints

m Potential bugs

m Certain presence
of bugs

m Critical operations

® Domain
knowledge

Prune set

®m Branch hit
probabilities
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Path Exploration - Technigues

» “Blind” search

» Informed search

» Knowledge based search

22N

» Learning based search
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Path Exploration - Techniques

> “Blind” search
» DFS
» BFS
» Random (state/path) Search

» Informed search
» Knowledge based search

» .

» Learning based search

» .
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Path Exploration - Technigues

[ Path Exploration }
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So, what does that mean

> “Blind” heuristics
» More general - less efficient
»  BUT predictable memory usage

> Current Learning based approaches
» (Over)engineered to a single set of “vulnerabilities”
» No sense of global landscape

y Use of other external information

» Point to specific locations

> Hybrid approaches (Fuzzer/SymEx or SAST/SymEX)
» Very efficient, as they can complement each others' weaknesses
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So, what does that mean
» Categorization of the path

exploration techniques

» Categorization of features
used (f. ex., pie chart)
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So, what does that mean

> No uniform way to compare techniques...

» angr vs KLEE vs new implementation

» Targeted vs global

» L., VS ...

> No uniform benchmark...
» GNU Core utils, Juliet, RW bins, LAVA bench, SPEC CPU, ....

>y No uniform metric

» Coverage, vulnerabilities detected, accuracy, F1, vulnerability types, ....
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So, what does that mean

2 options

> Reimplement the more prominent techniques

OR

» Create a uniform way to compare engines/techniques
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So, what does that mean

2 options

» |[Reimplement the more prominent techniques

OR

» Create a uniform way to compare engines/techniques
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WIP

»  Comparative study of the exploration techniques

» Reimplemented in the same engine

» On the same set of binary
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WIP

»  Comparative study of the exploration techniques

» Reimplemented in the same engine
»TBD
» On the same set of binary

» CGC, CORE Utils, JULIET, ...
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