Find your Path — SOK Path
exploration (In progress)

Dairo de Ruck

DistriN=t %

Path Exploration

- A module of the symbolic engine

Path Exploration

> Algorithmic choice

. DistriN=t

Path Exploration

> Algorithmic choice

» Next exploration step

. DistriN=t

Path Exploration

> Algorithmic choice

» Next exploration step

» (sometimes) context-aware

5 DistriN=t

Path Exploration

> Algorithmic choice

» Next exploration step
» (sometimes) context-aware
» Significant impact on global efficiency

6 DistriN=t

Path Exploration

» Algorithmic choice

<
» (sometimes) context-aw%h%i @%@
%%@

» Significant impact on global efficiency @@@g

. DistriN=t

Path Exploration — working example

» How to detect bug in the red

Basic Block |

}L function1

A

» Exhaustive vs Efficient —»D
S A A

\
T_f
T_f1

8 DistriN=t

\
A A

Path Exploration

» Looking at a real Control Flow
Graph

> This choice has a major

Impact

Path Exploration STG RT

CFG was too big for
PowerPoint to handle... "
Use your imagination ©

10 DistriN=t

Path Exploration

» “Optimal” symbolic execution:

» Explore all possible paths

» Find EVERY vulnerability

" DistriN=t

Path Exploration

» "Optimal” symbolic execut

=
.h”u
©
Q
£
>
>
>
o
LLI
>
LL
e
=
LL

=t

DistriN

12

Path Exploration

» ...An Optimal world does not exist:
» Memory is finite
» Time IS money

» World peace is yet to be achieved

13 DistriN=t

Path Exploration

» ... An Optimal world does not exist, so:

» Find as many “targets” as possible within a reasonable time

y DistriN=t

Path Exploration

> ... An Optimal world does not exist, so:

» Find as much “targets” as possible within a reasonable time

Global view [——

15 DistriN=t

SOK

18 DistriN=t

SOK

)

Various characteristics defined

» Qverarching selection strategies

» Use of Search Space Optimizations (SSO)

19

Goal | Selection Sirategy S50 5 = g
= 3) = 5 £
E| 3|3 % |2|=|% $ g
2 = E] 0 a2l5|2 I L
=} |2y |H|E|E 5 o
HEREIERHEE
AEAEIRREIERE
CH N EN N Al -
(4]
[mn [¥] N+H 08 LINM IR
63| T x 09 NET
|68] T X ‘100 | KLEE LLVM IR
121] (¥] X X 11 angr VEX K
[39]* T 1] 11 | SAGE binary
|3a]* o] X X "12 | KLEE LLVM IR
|18] 4] H 12 | AEG binary
[37]* [¥] x 13 | KLEE LINM IR
[20]* T N x X 13 | KLEE LIVM IR
113] T H ‘14 LLVM IR
[14] [¥] X X 14 7
[47]* 4] ? x x | '15 | KLEE LINM IR
|28]* T X X x | 16 | KLEE LIVM IR
142) T X x | 16 | KLEE LLVM IR
[69]* [¥] x 19 | angr VEX TR
0] | o I 20 AST
[43]* o] X X 20 | SAGE binary
[16] [x x | 20 | KLEE | LINMIR
[62]* [¥] X 200 | KLEE LINM IR
|30]* L] X "21 | KLEE LLVM IR
[48]* [§] X 21 | angr VEX IR
|65] T x 21 | angr VEX IR
66] | T X 20| angr VEX IR
|26]* L] X 21 SPF Java bitcode
[411* [¥] % x x | 22 | Cover VEX IR
[56] (4] X x | "22 hinary
@S [T I k] hinary
151] T X X 23 WebASM
1511 4] PE] binary
67 | T N x| x | 23 binary
149] L] X 23 C-prog
|54)* [§] N X X x | "23 | Cover VEX IR
132] (4] x 23 SPF | Java bitcode
22F | O I 23 binary

Path Exploration

> How to execute path exploration in real life?

21 DistriN=t

Path Exploration

> How to execute path exploration in real life?

» “Blind”

» Informed (in any way)

22 DistriN=t

Path Exploration

> How to execute path exploration in real life?

» “Blind” i
» Informed (in any way)

23 DistriN=t

Path Exploration - Features

» Relate to the SUT (subject under test)

» .. orto the algorithm in use

26 DistriN=t

Path Exploration - Features

> Relate to the SUT

» (CFG, node connectivity, loops, branch hit probabilities,...)

» .. or to the algorithm in use
» (DFS, BFS, RNG element, lowest path costs, ...)

27 DistriN=t

Path Exploration - Features

» More advanced:

» Potential presence of bugs

28 DistriN=t

Path Exploration - Features
> More advanced:

» Potential presence of bugs

» Certain presence of bugs

29 DistriN=t

Path Exploration - Features

» More advanced:

» Potential presence of bugs
» Certain presence of bugs

» Insertion of domain knowledge

30 DistriN=t

Path Exploration - Features

> More advanced:
» Potential presence of bugs
» Certain presence of bugs

» Insertion of domain knowledge

» Preprocessing SAST/DAST step

)) - = m

31 DistriN=t

m Distance
CFG spectra

m Constraints

m Potential bugs

m Certain presence
of bugs

m Critical operations

® Domain
knowledge

Prune set

®m Branch hit
probabilities

Feature Usage

Path Exploration - Technigues

» “Blind” search

» Informed search

» Knowledge based search

22N

» Learning based search

»

” DistriN=t

Path Exploration - Techniques

> “Blind” search
» DFS
» BFS
» Random (state/path) Search

» Informed search
» Knowledge based search

» .

» Learning based search

» .

35 DistriN=t

Path Exploration - Technigues

[Path Exploration }

\ 4 Y

= =

\ 4 Y

Knowledge Learning
Based Based

Internal External
Knowledge Knowledge

36 DistriN=t

So, what does that mean

> “Blind” heuristics
» More general - less efficient
» BUT predictable memory usage

> Current Learning based approaches
» (Over)engineered to a single set of “vulnerabilities”
» No sense of global landscape

y Use of other external information

» Point to specific locations

> Hybrid approaches (Fuzzer/SymEx or SAST/SymEX)
» Very efficient, as they can complement each others' weaknesses

37

DistriN=t

So, what does that mean
» Categorization of the path

exploration techniques

» Categorization of features
used (f. ex., pie chart)

38

nnnnnnnn

DistriN=t

So, what does that mean

> No uniform way to compare techniques...

» angr vs KLEE vs new implementation

» Targeted vs global

» L., VS ...

> No uniform benchmark...
» GNU Core utils, Juliet, RW bins, LAVA bench, SPEC CPU,

>y No uniform metric

» Coverage, vulnerabilities detected, accuracy, F1, vulnerability types,

39 DistriN=t

So, what does that mean

2 options

> Reimplement the more prominent techniques

OR

» Create a uniform way to compare engines/techniques

20 DistriN=t

So, what does that mean

2 options

» |[Reimplement the more prominent techniques

OR

» Create a uniform way to compare engines/techniques

" DistriN=t

WIP

» Comparative study of the exploration techniques

» Reimplemented in the same engine

» On the same set of binary

4o DistriN=t

WIP

» Comparative study of the exploration techniques

» Reimplemented in the same engine
»TBD
» On the same set of binary

» CGC, CORE Utils, JULIET, ...

42 DistriN=t

DistriN=t

https://distrinet.cs.kuleuven.be/

mailto:Dairo.deruck@kuleuven.be

	Default Section
	Slide 1: Find your Path – SOK Path exploration (in progress)

	Path Exploration
	Slide 2: Path Exploration - A module of the symbolic engine
	Slide 3: Path Exploration
	Slide 4: Path Exploration
	Slide 5: Path Exploration
	Slide 6: Path Exploration
	Slide 7: Path Exploration
	Slide 8: Path Exploration – working example
	Slide 9: Path Exploration
	Slide 10: Path Exploration
	Slide 11: Path Exploration
	Slide 12: Path Exploration
	Slide 13: Path Exploration
	Slide 14: Path Exploration
	Slide 15: Path Exploration
	Slide 18: SOK
	Slide 19: SOK

	How to: Path Exploration
	Slide 21: Path Exploration
	Slide 22: Path Exploration
	Slide 23: Path Exploration

	Path Exploration Features
	Slide 26: Path Exploration - Features
	Slide 27: Path Exploration - Features
	Slide 28: Path Exploration - Features
	Slide 29: Path Exploration - Features
	Slide 30: Path Exploration - Features
	Slide 31: Path Exploration - Features
	Slide 32: Features

	Various techniques
	Slide 34: Path Exploration - Techniques
	Slide 35: Path Exploration - Techniques
	Slide 36: Path Exploration - Techniques

	SOK
	Slide 37: So, what does that mean
	Slide 38: So, what does that mean
	Slide 39: So, what does that mean
	Slide 40: So, what does that mean
	Slide 41: So, what does that mean
	Slide 42: WIP
	Slide 43: WIP
	Slide 44
	Slide 45: Thank you!

