
Let’s help symbolic execution SOAR!

Tomasz Kuchta

Samsung R&D Institute Poland

KLEE Workshop 2024, Lisbon

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex

KLEE Workshop 2024, Lisbon 2

Agenda

Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex

KLEE Workshop 2024, Lisbon 3

• First proposed in mid-70’s

• Really took off in 2000’s with the advancement of SMT solvers

• Applied for: bug finding, analysis, security, equivalence checking,

input recovery, patch testing, etc.

• Many flavors: DSE, concolic execution, hybrid approaches with

fuzzing

KLEE Workshop 2024, Lisbon 4

Symbolic execution: how did we get here?

• Success stories: testing Microsoft Office (SAGE), success of symbex-based

tools at DARPA Cyber Grand Challenge (Mayhem, Driller)

• Well established tools: KLEE, Symcc, Symbolic PathFinder, Angr

• Symbex offers great features: no False Positives (FPs) and a thorough

reasoning about explored execution paths

• Yes, but -> still used more as a boutique approach rather than first choice

KLEE Workshop 2024, Lisbon 5

Symbolic execution: how do we stand?

• Static analysis has been widely used in Industry

• Often a project needs to pass Klocwork / Coverity for sign-off

• OSS tools: Clang Static Analyzer, Meta Infer, Ericsson CodeChecker

scalability, ease of use produces (mostly*) false positives

* More fine-tuning -> fewer FPs

KLEE Workshop 2024, Lisbon 6

Symbex vs others: static analysis

KLEE Workshop 2024, Lisbon 7

Runs, I need more runs!

Neo

• Fuzzing: current de-facto standard

• Original paper from 1990 but the technique really took off with AFL

• Widely used for bug finding and security testing in particular

• Seems like everyone knows about / heard of fuzzing

• Variety of OSS tools, e.g. AFL++, syzkaller, libfuzzer

scalability, ease of use lack of reasoning power

KLEE Workshop 2024, Lisbon 8

Symbex vs others: fuzzing

Why don’t you use symbex?!

KLEE Workshop 2024, Lisbon 9

The mythical path explosion
problem

KLEE Workshop 2024, Lisbon 10

The mythical path explosion
problem It has the path explosion

problem!

KLEE Workshop 2024, Lisbon 11

Path explosion refers to the fact that the number of

control-flow paths in a program grows exponentially

("explodes") with an increase in program size and can

even be infinite in the case of programs with

unbounded loop iterations.

Wikipedia

• Is it _really_ an issue with symbex then?

• Path explosion happens not because we use symbex

• Software is just that complex and that’s the fundamental problem

KLEE Workshop 2024, Lisbon 12

The mythical path explosion problem

• Ease of deployment / quick learning curve

• Scalability

• Customization for purpose

• Engineering: lots of small tweaks, bits and pieces that add up

• Bottom line: if we cannot change the fundamental limitation, we should

find ways around it – there is no spoon and there is no secret sauce

KLEE Workshop 2024, Lisbon 13

What is the secret sauce then? What makes a
technique widely used?

Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex

KLEE Workshop 2024, Lisbon 14

KLEE Workshop 2024, Lisbon 15

Give a man a fish and you feed him for a day; teach a man

to do program analysis and you feed him for a lifetime.

Author Unknown

• Let’s go through 3 projects in which we applied certain “tweaks” to

adapt symbex for a certain purpose and help it scale

• Docovery: limiting the search space via selective symbex

• Shadow: targeting only the behavior modified by a patch

• AoT: limiting the search space via target extraction, enabling symbex

on difficult targets

KLEE Workshop 2024, Lisbon 16

Use this one simple symbex trick to …

Cristian Cadar, Miguel Castro and Manuel Costa

“Docovery: Toward Generic Automatic Document Recovery”
ASE’14

KLEE Workshop 2024, Lisbon 17

Example #1: Docovery

• Broken inputs crash programs, users cannot access the contents

• Reason: corrupt data, buggy programs

• Also: input parsing accounts for a lot of security vulnerabilities

KLEE Workshop 2024, Lisbon 18

Challenge

• Try to fix the program

• Try to protect the program

• Try to fix the document

• ?

KLEE Workshop 2024, Lisbon 19

Possible solutions

Is it possible to fix a broken document, without assuming any input

format, in a way that preserves the original contents as much as

possible?

KLEE Workshop 2024, Lisbon 20

Motivation

• Leverage the fact that a program knows how to parse its input

• Follow an execution path of a crashing input

• Try to diverge

• Generate a modified input for the alternative path

KLEE Workshop 2024, Lisbon 21

Docovery: the idea

KLEE Workshop 2024, Lisbon 22

Follow an execution path of a crashing input

Crash

Byte #4 == ‘A’

C1

¬C2

¬ C3

C2

C3

C1, …, CN : constraints

KLEE Workshop 2024, Lisbon 23

Try to diverge

Crash

Byte #4 == ‘A’

C1

¬C2 C2

¬ C3 C3

C1, …, CN : constraints

KLEE Workshop 2024, Lisbon 24

Try to diverge

Success

Byte #4 == ‘A’

C1

¬C2 C2

C4 C3

C1, …, CN : constraints

KLEE Workshop 2024, Lisbon 25

Generate a modified input for the new path

Success

Byte #4 == ‘A’ Byte #4 == ‘B’

C1

¬C2 C2

C4 C3

C1, …, CN : constraints

• We learnt that we cannot mark entire input as symbolic

• Example: Pine, a command line e-mail client

• Bug: a specially crafted “From” field corrupts the mailbox

• Let’s imagine the mailbox has 1000 emails, the corrupted message

is the last to be parsed and entire input data is symbolic

KLEE Workshop 2024, Lisbon 26

Challenges

• Use Dynamic Taint Tracking

• Narrow down the part of the input responsible for the crash

• Only mark _that part_ as symbolic

KLEE Workshop 2024, Lisbon 27

Solution

KLEE Workshop 2024, Lisbon 28

Result

KLEE Workshop 2024, Lisbon 29

Result

• We used concolic execution -> limiting the search to a single path

and its divergences

• We selectively marked only certain bytes as symbolic -> no longer

possible to branch at _any_ branch point

• We lazily collected execution paths (no SMT queries upfront)

• Selective symbex was the key performance enabler

KLEE Workshop 2024, Lisbon 30

Docovery: highlights

Hristina Palikareva and Cristian Cadar

“Shadow of a Doubt: Testing for Divergences Between Software Versions”
ICSE’16

“Shadow Symbolic Execution for Testing Software Patches”
TOSEM’18

KLEE Workshop 2024, Lisbon 31

Example #2: Shadow

• Software patches are at the core of development

• Example: bug fixes, new features, performance and usability

improvements

• Testing software patches is hard

• They are poorly tested in practice

• May introduce bugs

KLEE Workshop 2024, Lisbon 32

Shadow – the problem

• A lot of behaviors in the old and the new version are

exactly the same

• We may achieve 100% test coverage but not 100% behavior

coverage

KLEE Workshop 2024, Lisbon 33

Shadow – the motivation

// Old

01 int gt_100(unsigned x) {

02 unsigned y = x;

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 34

Shadow – the motivation

// New

01 int gt_100(unsigned x) {

02 unsigned y = x + 1;

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

• Test cases: x = 0, x = 100, x = 101 -> 100% code coverage

• Only 50% new behavior coverage

• Only focus on exploring the behaviors which are different across two

versions

• Limiting the search space by pruning identical paths and entire execution

subtrees

• We achieve that through 4-way fork:

• Both versions combined in a single symbolic execution instance

• The old version shadows the new one

KLEE Workshop 2024, Lisbon 35

Shadow: the idea

KLEE Workshop 2024, Lisbon 36

4-way fork

The best fork
since 2-way fork

// Old

01 int gt_100(unsigned x) {

02 unsigned y = x;

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 37

4-way fork

// New

01 int gt_100(unsigned x) {

02 unsigned y = x + 1;

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 38

4-way fork

// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 39

4-way fork

x + 1 ≤ 100 x + 1 > 100

// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 40

4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100

// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 41

4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100

New: else
Old: else

New: else
Old: then

New: then
Old: else

New: then
Old: then

// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 42

4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100

New: else
Old: else

New: else
Old: then

New: then
Old: else

New: then
Old: then

// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }

KLEE Workshop 2024, Lisbon 43

4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100

New: else
Old: else

New: else
Old: then

New: then
Old: else

New: then
Old: then

x = 100x = MAX_UINT

• Use test suite inputs

• Find divergent paths

• Perform bounded symbolic execution

• Check if divergences translate to functional differences

• Check program output, return code, memory violations

KLEE Workshop 2024, Lisbon 44

Testing with Shadow

BSE

BSE

• Concolic execution of test cases that touch the patch

• Pruning execution paths via 4-way fork

• Space efficiency: 2 versions combined in a single execution

• Unchanged common path prefix is executed only once

KLEE Workshop 2024, Lisbon 45

Shadow: highlights

Bartosz Zator

“Auto Off-Target: Enabling Thorough and Scalable Testing for
Complex Software Systems”, ASE’22

KLEE Workshop 2024, Lisbon 46

Example #3: Auto Off-Target

• Software is increasingly complex: size, variety of configurations

• Crucial software systems we rely on are often built with unsafe

languages, e.g. C/C++

• Examples: OS kernels, bootloaders, modems, WLAN, IoT,

automotive, firmware, etc.

KLEE Workshop 2024, Lisbon 47

Auto Off-Target – the problem

• Working with such systems is challenging, e.g.

• The code base size

• Variety of configurations

• Thorough testing is necessary but often difficult:

• Custom hardware –> no virtualization available

• Non-trivial setup of testing and debugging

• Toolchain not always available on device

• Hard to run techniques such as symbolic execution

KLEE Workshop 2024, Lisbon 48

Auto Off-Target – the problem

• Challenge #1: large system size leads to path explosion

• Challenge #2: not easy to build

• Challenge #3: no obvious entry points

• Modern smartphone: over 70M LOC, > 300k C/C++ source files,

ARM-based

KLEE Workshop 2024, Lisbon 49

Auto Off-Target – the problem

$ klee kernel.bc <my symbolic input>

KLEE Workshop 2024, Lisbon 50

One does not simply run symbolic execution on a bootloader.

Boromir

• Setup a testing mobile network

• Send test messages over the air

• When a crash occurs: capture logs, start analysis

• Reboot and repeat

KLEE Workshop 2024, Lisbon 51

On-target testing: baseband message parser

000111100110111000101100100100100100100
01110011010010010011000110011001111001101

Many components, e.g., a modem or a bootloader, are hard to test

on-target (on the device) and difficult to extract for off-target testing.

Can we thoroughly test system-level C/C++ software regardless of the

component and provide stronger quality guarantees?

KLEE Workshop 2024, Lisbon 52

Motivation

• Automatically extract selected critical part of target code

• Create a test harness, called an Off-Target (OT) program

• Test the harness on powerful x86_64 servers

• We can use available toolchain for fuzzing, analysis, debugging, etc.

• In particular, we can run symbex on OT

KLEE Workshop 2024, Lisbon 53

AoT: the idea

KLEE Workshop 2024, Lisbon 54

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Build the target source code (once)

KLEE Workshop 2024, Lisbon 55

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Extract information about the built modules

KLEE Workshop 2024, Lisbon 56

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Extract source Information, including types,
globals, functions and their dependencies

KLEE Workshop 2024, Lisbon 57

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Base functions are the functions we want to test

KLEE Workshop 2024, Lisbon 58

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Recursively pull in all function in a call hierarchy
of the tested function

KLEE Workshop 2024, Lisbon 59

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Cut off the code the is outside of the current
module + generate stubs

KLEE Workshop 2024, Lisbon 60

Implementation of cut-off

Foo1

Internal Functions

External Functions

Foo2 Foo3

Foo4

Foo5

Foo8Foo7Foo6

(…)(…)(…)

Base Functions

KLEE Workshop 2024, Lisbon 61

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Provide program state initialization, e.g. allocate
memory for pointers

KLEE Workshop 2024, Lisbon 62

AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery

FPs RejectionCAS

Code, Types,
Globals,

Functions

ModulesBAS

FTDB

Apply fuzzing, symbolic execution or other
techniques to test the off-target

KLEE Workshop 2024, Lisbon 63

How does it work in practice?

• Example: test IncrementalFS ioctl handler from AOSP kernel

• 1) Perform the kernel build to obtain CAS databases (once)

• 2) Generate OT for pending_reads_dispatch_ioctl(): ~42s

$ aot.py --config=./cfg.json
--product=aosp --version=cheetah_android-13.0.0_r66 --build-type=eng
--functions pending_reads_dispatch_ioctl
--output-dir=pending_reads_dispatch_ioctl_out
--db=vmlinux_db_aot.img

KLEE Workshop 2024, Lisbon 64

What’s inside OT
// test driver and main header
aot.c
aot.h

// aot libraries & headers
aot_fuzz_lib.c
aot_dfsan.c.lib
aot_mem_init_lib.c
aot_lib.c
aot_log.c
aot_recall.c
aot_replacements.h
fptr_stub.c.template
fptr_stub_known_funcs.c.template
vlayout.c.template

// literals for fuzzing
aot_literals

Makefile

// source files
common_18.c
core_920.c
cpufeature_1345.c
data_mgmt_2430.c
file_1923.c
format_3435.c
fse_compress_20.c
fsnotify_372.c
...
percpu-rwsem_2027.c
pseudo_files_1525.c
read_write_2502.c
rwsem_2924.c
splice_1300.c
strnlen_user_3295.c
tree_3058.c
util_2104.c
verity_1115.c
vfs_2350.c

// stub files
attr_stub_1520.c
auditsc_stub_496.c
common_stub_18.c
core_stub_920.c
cred_stub_767.c
data_mgmt_stub_2430.c
dcache_stub_957.c
filemap_stub_3843.c
...
open_stub_3030.c
percpu-rwsem_stub_2027.c
read_write_stub_2502.c
rwsem_stub_2924.c
srcutree_stub_1825.c
timekeeping_stub_3614.c
tree_stub_3058.c
verity_stub_1115.c
vfs_stub_2350.c
xattr_stub_1884.c

KLEE Workshop 2024, Lisbon 65

What’s inside OT
// test driver and main header
aot.c
aot.h

// aot libraries & headers
aot_fuzz_lib.c
aot_dfsan.c.lib
aot_mem_init_lib.c
aot_lib.c
aot_log.c
aot_recall.c
aot_replacements.h
fptr_stub.c.template
fptr_stub_known_funcs.c.template
vlayout.c.template

// literals for fuzzing
aot_literals

Makefile

// source files
common_18.c
core_920.c
cpufeature_1345.c
data_mgmt_2430.c
file_1923.c
format_3435.c
fse_compress_20.c
fsnotify_372.c
...
percpu-rwsem_2027.c
pseudo_files_1525.c
read_write_2502.c
rwsem_2924.c
splice_1300.c
strnlen_user_3295.c
tree_3058.c
util_2104.c
verity_1115.c
vfs_2350.c

// stub files
attr_stub_1520.c
auditsc_stub_496.c
common_stub_18.c
core_stub_920.c
cred_stub_767.c
data_mgmt_stub_2430.c
dcache_stub_957.c
filemap_stub_3843.c
...
open_stub_3030.c
percpu-rwsem_stub_2027.c
read_write_stub_2502.c
rwsem_stub_2924.c
srcutree_stub_1825.c
timekeeping_stub_3614.c
tree_stub_3058.c
verity_stub_1115.c
vfs_stub_2350.c
xattr_stub_1884.c

Targets: afl, aflgo,
asan, daikon, debug, dfsan,
GCC fanalyzer, FramaC, gcov,
klee, msan, symcc, ubsan

KLEE Workshop 2024, Lisbon 66

What’s inside the OT

$ cloc .
Language files blank comment code

C/C++ Header 7 1802 776 15691
C 60 2268 6403 14422

// excluding aot.c

$ cloc .
Language files blank comment code

C/C++ Header 7 1802 776 15691
C 59 1825 3777 4404

• Types: 4223

• Struct types: 1089

• Globals: 14

• Internal funcs: 251

• External funcs: 90

KLEE Workshop 2024, Lisbon 67

Let’s test it!

• Build targets for KLEE and AFL++

• Run KLEE for 1h, then AFL++ with symcc for 1h

• Results: 47TCs, 8 crashes, including 3 FPs and …
$./asan out_dir/default/crashes/id\:000007\,sig\:06\,src\:000044+000009\,time\:2557397\,execs\:2034693\,op\: ...
===
==3794212==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000005cf1 at pc 0x000000492f60 bp
0x7ffd1fa48110 sp 0x7ffd1fa478d8
WRITE of size 17 at 0x602000005cf1 thread T0

#0 0x492f5f in __asan_memcpy asan+0x492f5f
#1 0x4c632b in ioctl_get_read_timeouts pseudo_files_1525.c:873:13
#2 0x4c3286 in pending_reads_dispatch_ioctl pseudo_files_1525.c:179:16
#3 0x4c3172 in wrapper_pending_reads_dispatch_ioctl_112617 pseudo_files_1525.c:987:9
#4 0x5620b5 in main aot.c:13079:19

KLEE Workshop 2024, Lisbon 68

WARNING: the following slides contain

source code in a memory-unsafe

programming language.

KLEE Workshop 2024, Lisbon 69

What’s inside OT

// aot.c
int main(int AOT_argc, char *AOT_argv[]) {

...
// Global vars init
aot_memory_init(&fsnotify_mark_srcu, sizeof(struct srcu_struct),

0 /* fuzz */, 0);
...
// Call site for function 'pending_reads_dispatch_ioctl'
{
struct file *f;
aot_memory_init_ptr((void **)&f, sizeof(struct file), 1 /* count */,

0 /* fuzz */, 0);
...
aot_memory_init_func_ptr(&f->f_mapping->a_ops->readpage,

aotstub_f_f_mapping_a_ops_readpage);
unsigned int req;
aot_memory_init(&req, sizeof(unsigned int), 1 /* fuzz */, 0);

unsigned long arg;
unsigned long *arg_ptr;
aot_memory_init_ptr((void **)&arg_ptr, sizeof(unsigned long), 512,

1 /* fuzz */, "aot_var_1");
aot_tag_memory(arg_ptr, sizeof(unsigned long) * 512, 0);
aot_tag_memory(&arg_ptr, sizeof(arg_ptr), 0);
arg = (unsigned long)arg_ptr;

ret_value = wrapper_pending_reads_dispatch_ioctl_112617(f, req, arg);

KLEE Workshop 2024, Lisbon 70

The bug
static long pending_reads_dispatch_ioctl(struct file *f, unsigned int req,

unsigned long arg)
{

struct mount_info *mi = get_mount_info(file_superblock(f));

switch (req) {
case INCFS_IOC_CREATE_FILE:

return ioctl_create_file(f, (void __user *)arg);
case INCFS_IOC_PERMIT_FILL:

return ioctl_permit_fill(f, (void __user *)arg);
case INCFS_IOC_CREATE_MAPPED_FILE:

return ioctl_create_mapped_file(f, (void __user *)arg);
case INCFS_IOC_GET_READ_TIMEOUTS:

return ioctl_get_read_timeouts(mi, (void __user *)arg);
case INCFS_IOC_SET_READ_TIMEOUTS:

return ioctl_set_read_timeouts(mi, (void __user *)arg);
case INCFS_IOC_GET_LAST_READ_ERROR:

return ioctl_get_last_read_error(mi, (void __user *)arg);
default:

return -EINVAL;
}

KLEE Workshop 2024, Lisbon 71

The bug

static long ioctl_get_read_timeouts(struct mount_info *mi, void *arg) {
struct incfs_get_read_timeouts_args *args_usr_ptr = arg;
struct incfs_get_read_timeouts_args args = {};
int error = 0;
struct incfs_per_uid_read_timeouts *buffer;
int size;
if (copy_from_user(&args, args_usr_ptr, sizeof (args))) {

return -22;
}
if (args.timeouts_array_size_out > 4096) {

return -22;
}
buffer = kzalloc(args.timeouts_array_size_out, (((gfp_t)(1024U | 2048U)) | ((gfp_t)64U)));
if (!buffer) {

return -12;
}
spin_lock(&mi->mi_per_uid_read_timeouts_lock);
size = mi->mi_per_uid_read_timeouts_size;
if (args.timeouts_array_size < size) {

error = -7;
} else {

if (size) {
memcpy(buffer, mi->mi_per_uid_read_timeouts, size);

}
}

KLEE Workshop 2024, Lisbon 72

The bug

static long ioctl_get_read_timeouts(struct mount_info *mi, void *arg) {
struct incfs_get_read_timeouts_args *args_usr_ptr = arg;
struct incfs_get_read_timeouts_args args = {};
int error = 0;
struct incfs_per_uid_read_timeouts *buffer;
int size;
if (copy_from_user(&args, args_usr_ptr, sizeof (args))) {

return -22;
}
if (args.timeouts_array_size_out > 4096) {

return -22;
}
buffer = kzalloc(args.timeouts_array_size_out, (((gfp_t)(1024U | 2048U)) | ((gfp_t)64U)));
if (!buffer) {

return -12;
}
spin_lock(&mi->mi_per_uid_read_timeouts_lock);
size = mi->mi_per_uid_read_timeouts_size;
if (args.timeouts_array_size < size) {

error = -7;
} else {

if (size) {
memcpy(buffer, mi->mi_per_uid_read_timeouts, size);

}
}

KLEE Workshop 2024, Lisbon 73

To KLEE, or not to KLEE, that is the question

Hamlet

• Find bugs

• Bootstrap the program state, provide “data virtualization”

• Is that really helping? Let’s check on 4k entry points in AOSP kernel:

KLEE Workshop 2024, Lisbon 74

The role of symbex in AoT

KLEE + AFL/symcc AFL/symcc AFL only

TCs total 50.387 + 73.951 73.750 71.768

• We over-approximate program state values

• This leads to FPs: behaviors that are only possible in the OT code

• In the kernel, a big source of FPs is the system state, not related to

user-controlled data

KLEE Workshop 2024, Lisbon 75

Program state discovery

static long pending_reads_dispatch_ioctl(struct file *f, unsigned int req,
unsigned long arg)

• KFLAT is a novel approach to memory dumps

• Selectively dumps system memory on the source code level

• The dumps can be restored on a different machine but with the same

code structures

KLEE Workshop 2024, Lisbon 76

KFLAT: selective code-level memory dumps

• We collect real memory values on the device and plug them into OTs

• System state is concrete, user data is symbolic / fuzzed

• Also, we could selectively mark data as symbolic if needed

• Advantages:

• Less over-approximation -> fewer FPs

• Greatly limiting the search space on non user-controlled data

KLEE Workshop 2024, Lisbon 77

AoT♭ : AoT + KFLAT

• Makes is possible to execute parts of complex low-level systems

• Enables easy symbex on low-level code

• Symbex enables execution of OT without knowing the program state

• AoT reduces complexity by limiting the executed code size

• AoT provides flexibility on how much data is symbolic

KLEE Workshop 2024, Lisbon 78

AoT: highlights

• We have some other cool projects in Mobile Security Group

• We release our tools to open source

• AoT: https://github.com/Samsung/auto_off_target

• CAS: https://github.com/Samsung/cas

• KFLAT: https://github.com/Samsung/kflat

• SEAL: https://github.com/Samsung/seal

KLEE Workshop 2024, Lisbon 79

Mobile Security Group @ SRPOL

https://github.com/Samsung/auto_off_target
https://github.com/Samsung/cas
https://github.com/Samsung/kflat
https://github.com/Samsung/seal

• We give talks

• DPE Summit’23: https://youtu.be/FZrhHgor4NE?si=4hv77EtI-CZN5E4b

• OSS NA’23: https://youtu.be/Ynunpuk-Vfo?si=i83R6ZANwpXPASet

• LSS NA’22: https://youtu.be/M7gl7MFU_Bc?si=LmLmySHbwINSldCg&t=648

• Interested? Feel free to reach out!

KLEE Workshop 2024, Lisbon 80

Mobile Security Group @ SRPOL

https://youtu.be/FZrhHgor4NE?si=4hv77EtI-CZN5E4b
https://youtu.be/Ynunpuk-Vfo?si=i83R6ZANwpXPASet
https://youtu.be/M7gl7MFU_Bc?si=LmLmySHbwINSldCg&t=648

Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex

KLEE Workshop 2024, Lisbon 81

• We propose the following directions:

• Selective

• Open-source

• Approachable

• Real-world

KLEE Workshop 2024, Lisbon 82

How can we help symbex SOAR?

 Reasoning: less symbolic data => smaller search space

KLEE Workshop 2024, Lisbon 83

S is for Selective

Selectively mark only certain
bytes / variables as symbolic

Symbolically execute
selected parts of larger
systems

by target
by data

• Standing on the shoulders of giants

• Opportunity to converge various “little” tweaks

• Add-on: peer reviews usually make the end result better

• Caveat: for this to work, forks need to go back to the mainline

• AoT: 2 PRs for KLEE (one in 3.1), 4 PRs for LLVM (DFSAN)

KLEE Workshop 2024, Lisbon 84

O is for Open Source

• Mind the audience: some might not have heard of SMT

• One-liner is king

• Ideally: easy to deploy, easy to use, easy to analyze, easy to extend

• User docs != developer docs (good to have both)

KLEE Workshop 2024, Lisbon 85

A is for Approachable

• Real-world users work on real-world targets

• Aim for hard targets: web browsers, embedded, stateful, etc.

• Needed: scalability, ease of deployment

KLEE Workshop 2024, Lisbon 86

R is for Real-World

Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex

KLEE Workshop 2024, Lisbon 87

• Different objectives: research work vs product development

• What people have time working on

KLEE Workshop 2024, Lisbon 88

Academia & Industry

translates to

• Academia:

• Industry has unlimited resources for engineering

• Engineering details can be sorted out easily

• Industry:

• The paper should work out of the box

• We have the best stuff, not much interesting stuff comes out of Academia

KLEE Workshop 2024, Lisbon 89

Common misconceptions

• How are the tools evaluated in the Industry:

• With constrained resources (time & people), often as a side task

• On a specific real-world target

• Either it works or it doesn’t

• Research contribution might be – sadly – underappreciated

• What should a great symbex tool strive for:

• Ease of use, being straightforward

• Scalability

• The tool outcomes are easy to understand and process

KLEE Workshop 2024, Lisbon 90

Academia & Industry

Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex

KLEE Workshop 2024, Lisbon 91

• Symbex now more of a boutique approach than commonplace

• If a major breakthrough doesn’t happen (e.g. quantum symbex,

custom HW, etc.), we need to keep working on the little things that

add up

• How do we move forward?

KLEE Workshop 2024, Lisbon 92

Future outlook for symbex

• Academia:

• Aim for real-world applications

• Often, a lot of value comes from the little engineering tricks

• Industry:

• Merge changes back to the mainline

• Spend more resources to appreciate research

KLEE Workshop 2024, Lisbon 93

Future outlook for symbex

KLEE Workshop 2024, Lisbon 94

Symbex’s not dead, Jim

Dr Leonard McCoy, USS Enterprise

• There is no secret sauce – just a lot of engineering

and small tweaks

• Since we can’t defeat the path explosion problem we need

to find smart ways around it

• Examples: Docovery, Shadow & Auto Off-Target

KLEE Workshop 2024, Lisbon 95

Summary

• We propose the following directions for symbex:

• Selective

• Open-source

• Approachable

• Real-world

• Symbex can and should soar!

KLEE Workshop 2024, Lisbon 96

Summary

• The following graphics were used in the slides:
• Image by Freepik

• Image by Freepik

• Image by Harryarts on Freepik

• Image by macrovector on Freepik

• Image by pikisuperstar on Freepik

• Icon by Freepik

• Icon by Freepik

• Image by Freepik

• Image by rawpixel.com on Freepik

• Image by KamranAydinov on Freepik

• Image by starline on Freepik

KLEE Workshop 2024, Lisbon 97

Credits

https://www.freepik.com/free-psd/x-symbol-isolated_44989222.htm#query=x%20symbol%20isolated&position=30&from_view=search&track=ais&uuid=d31821a2-2df8-4575-9cb7-7db984376432
https://www.freepik.com/free-psd/check-symbol-isolated_44989288.htm#query=check%20symbol%20isolated&position=4&from_view=search&track=ais&uuid=b5b9d671-b744-4d2c-af5b-4c60dc6a7cdc
https://www.freepik.com/free-vector/floating-shapes_1055149.htm#query=Harryarts&position=6&from_view=search&track=sph&uuid=1ca940fa-48b3-481b-91e2-f5077c729d5b
https://www.freepik.com/free-vector/origami-paper-doves_13187515.htm#page=2&query=birds%20soaring&position=3&from_view=search&track=ais&uuid=17af1bbf-af18-4ac8-803f-355512db88a7
https://www.freepik.com/free-vector/hand-drawn-flat-design-greek-mythology-illustration_25860305.htm#page=2&query=legendary&position=9&from_view=search&track=sph&uuid=9f9cd058-9f90-4cfd-a603-9430e79de9b1
https://www.freepik.com/icon/document_2258853#fromView=search&term=document&track=ais&page=1&position=18&uuid=0de66f6d-2795-484c-a74a-306e84ef7608
https://www.freepik.com/icon/group_681443
https://www.freepik.com/free-vector/black-smartphone_1359612.htm?query=black%20smartphone#from_view=detail_alsolike
https://www.freepik.com/free-vector/illustration-broadcasting_2606146.htm#page=2&query=base%20station&position=22&from_view=search&track=ais&uuid=84a8d5ab-8e09-4e4f-8cac-155db5a72378
https://www.freepik.com/free-photo/front-view-steel-fork-black-surface-free-space_12061284.htm#query=4-way%20fork&position=2&from_view=search&track=ais&uuid=76ba4edb-36aa-4edd-8000-9e52d8ae4488
https://www.freepik.com/free-vector/set-three-light-bulb-represent-effective-business-idea-concept_37588597.htm#fromView=search&page=1&position=0&uuid=b1c7d5fd-b485-4d61-8662-9652424e7f2f

