
Let’s help symbolic execution SOAR! 

Tomasz Kuchta

Samsung R&D Institute Poland

KLEE Workshop 2024, Lisbon



• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex 

KLEE Workshop 2024, Lisbon 2

Agenda



Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex 

KLEE Workshop 2024, Lisbon 3



• First proposed in mid-70’s

• Really took off in 2000’s with the advancement of SMT solvers

• Applied for: bug finding, analysis, security, equivalence checking, 

input recovery, patch testing, etc. 

• Many flavors: DSE, concolic execution, hybrid approaches with 

fuzzing
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Symbolic execution: how did we get here?



• Success stories: testing Microsoft Office (SAGE), success of symbex-based 

tools at DARPA Cyber Grand Challenge (Mayhem, Driller)

• Well established tools: KLEE, Symcc, Symbolic PathFinder, Angr

• Symbex offers great features: no False Positives (FPs) and a thorough

reasoning about explored execution paths

• Yes, but -> still used more as a boutique approach rather than first choice
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Symbolic execution: how do we stand?



• Static analysis has been widely used in Industry

• Often a project needs to pass Klocwork / Coverity for sign-off

• OSS tools: Clang Static Analyzer, Meta Infer, Ericsson CodeChecker

scalability, ease of use                 produces (mostly*) false positives

* More fine-tuning -> fewer FPs
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Symbex vs others: static analysis
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Runs, I need more runs!

Neo



• Fuzzing: current de-facto standard

• Original paper from 1990 but the technique really took off with AFL

• Widely used for bug finding and security testing in particular

• Seems like everyone knows about / heard of fuzzing

• Variety of OSS tools, e.g. AFL++, syzkaller, libfuzzer

scalability, ease of use                  lack of reasoning power
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Symbex vs others: fuzzing



Why don’t you use symbex?!
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The mythical path explosion 
problem
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The mythical path explosion 
problem It has the path explosion 

problem!
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Path explosion refers to the fact that the number of 

control-flow paths in a program grows exponentially 

("explodes") with an increase in program size and can 

even be infinite in the case of programs with 

unbounded loop iterations.

Wikipedia



• Is it _really_ an issue with symbex then?

• Path explosion happens not because we use symbex

• Software is just that complex and that’s the fundamental problem

KLEE Workshop 2024, Lisbon 12

The mythical path explosion problem



• Ease of deployment / quick learning curve

• Scalability

• Customization for purpose

• Engineering: lots of small tweaks, bits and pieces that add up

• Bottom line: if we cannot change the fundamental limitation, we should 

find ways around it – there is no spoon and there is no secret sauce
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What is the secret sauce then? What makes a 
technique widely used?
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Give a man a fish and you feed him for a day; teach a man 

to do program analysis and you feed him for a lifetime.

Author Unknown



• Let’s go through 3 projects in which we applied certain “tweaks” to 

adapt symbex for a certain purpose and help it scale

• Docovery: limiting the search space via selective symbex

• Shadow: targeting only the behavior modified by a patch 

• AoT: limiting the search space via target extraction, enabling symbex 

on difficult targets
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Use this one simple symbex trick to …



Cristian Cadar, Miguel Castro and Manuel Costa

“Docovery: Toward Generic Automatic Document Recovery” 
ASE’14
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Example #1: Docovery



• Broken inputs crash programs, users cannot access the contents

• Reason: corrupt data, buggy programs

• Also: input parsing accounts for a lot of security vulnerabilities 

KLEE Workshop 2024, Lisbon 18

Challenge



• Try to fix the program

• Try to protect the program

• Try to fix the document

• ?
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Possible solutions



Is it possible to fix a broken document, without assuming any input 

format, in a way that preserves the original contents as much as 

possible?
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Motivation



• Leverage the fact that a program knows how to parse its input

• Follow an execution path of a crashing input

• Try to diverge

• Generate a modified input for the alternative path
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Docovery: the idea
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Follow an execution path of a crashing input

Crash

Byte #4 == ‘A’

C1

¬C2

¬ C3

C2

C3

C1, …, CN : constraints
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Try to diverge

Crash

Byte #4 == ‘A’

C1

¬C2 C2

¬ C3 C3

C1, …, CN : constraints



KLEE Workshop 2024, Lisbon 24

Try to diverge

Success

Byte #4 == ‘A’

C1

¬C2 C2

C4 C3

C1, …, CN : constraints
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Generate a modified input for the new path

Success

Byte #4 == ‘A’ Byte #4 == ‘B’

C1

¬C2 C2

C4 C3

C1, …, CN : constraints



• We learnt that we cannot mark entire input as symbolic 

• Example: Pine, a command line e-mail client

• Bug: a specially crafted “From” field corrupts the mailbox

• Let’s imagine the mailbox has 1000 emails, the corrupted message 

is the last to be parsed and entire input data is symbolic
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Challenges



• Use Dynamic Taint Tracking

• Narrow down the part of the input responsible for the crash

• Only mark _that part_ as symbolic
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Solution
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Result
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Result



• We used concolic execution -> limiting the search to a single path 

and its divergences

• We selectively marked only certain bytes as symbolic -> no longer 

possible to branch at _any_ branch point

• We lazily collected execution paths (no SMT queries upfront)

• Selective symbex was the key performance enabler 
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Docovery: highlights



Hristina Palikareva and Cristian Cadar

“Shadow of a Doubt: Testing for Divergences Between Software Versions”
ICSE’16

“Shadow Symbolic Execution for Testing Software Patches”
TOSEM’18
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Example #2: Shadow



• Software patches are at the core of development

• Example: bug fixes, new features, performance and usability 

improvements

• Testing software patches is hard

• They are poorly tested in practice

• May introduce bugs
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Shadow – the problem



• A lot of behaviors in the old and the new version are 

_exactly_ the same

• We may achieve 100% test coverage but not 100% behavior 

coverage
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Shadow – the motivation



// Old

01 int gt_100(unsigned x) {

02 unsigned y = x;

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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Shadow – the motivation

// New

01 int gt_100(unsigned x) {

02 unsigned y = x + 1;

03 if (y > 100)

04   return 1;

05 else

06   return 0;

07 }

• Test cases: x = 0, x = 100, x = 101 -> 100% code coverage

• Only 50% new behavior coverage



• Only focus on exploring the behaviors which are different across two 

versions

• Limiting the search space by pruning identical paths and entire execution 

subtrees

• We achieve that through 4-way fork:

• Both versions combined in a single symbolic execution instance

• The old version shadows the new one
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Shadow: the idea
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4-way fork

The best fork 
since 2-way fork



// Old

01 int gt_100(unsigned x) {

02 unsigned y = x;

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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4-way fork

// New

01 int gt_100(unsigned x) {

02 unsigned y = x + 1;

03 if (y > 100)

04   return 1;

05 else

06   return 0;

07 }



// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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4-way fork



// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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4-way fork

x + 1 ≤ 100 x + 1 > 100



// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100



// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100

New: else
Old: else

New: else
Old: then

New: then
Old: else

New: then
Old: then



// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100

New: else
Old: else

New: else
Old: then

New: then
Old: else

New: then
Old: then



// Combined

01 int gt_100(unsigned x) {

02 unsigned y = change(x, x + 1);

03 if (y > 100)

04 return 1;

05 else

06 return 0;

07 }
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4-way fork

x + 1 ≤ 100 x + 1 > 100

x ≤ 100 x > 100 x ≤ 100 x > 100

New: else
Old: else

New: else
Old: then

New: then
Old: else

New: then
Old: then

x = 100x = MAX_UINT



• Use test suite inputs

• Find divergent paths

• Perform bounded symbolic execution

• Check if divergences translate to functional differences

• Check program output, return code, memory violations
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Testing with Shadow

BSE

BSE



• Concolic execution of test cases that touch the patch

• Pruning execution paths via 4-way fork

• Space efficiency: 2 versions combined in a single execution

• Unchanged common path prefix is executed only once
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Shadow: highlights



Bartosz Zator

“Auto Off-Target: Enabling Thorough and Scalable Testing for 
Complex Software Systems”, ASE’22
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Example #3: Auto Off-Target



• Software is increasingly complex: size, variety of configurations

• Crucial software systems we rely on are often built with unsafe 

languages, e.g. C/C++

• Examples: OS kernels, bootloaders, modems, WLAN, IoT, 

automotive, firmware, etc.
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Auto Off-Target – the problem



• Working with such systems is challenging, e.g.

• The code base size

• Variety of configurations 

• Thorough testing is necessary but often difficult:

• Custom hardware –> no virtualization available

• Non-trivial setup of testing and debugging

• Toolchain not always available on device

• Hard to run techniques such as symbolic execution
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Auto Off-Target – the problem



• Challenge #1: large system size leads to path explosion

• Challenge #2: not easy to build

• Challenge #3: no obvious entry points

• Modern smartphone: over 70M LOC, > 300k C/C++ source files, 

ARM-based
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Auto Off-Target – the problem

$ klee kernel.bc <my symbolic input>
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One does not simply run symbolic execution on a bootloader.

Boromir



• Setup a testing mobile network

• Send test messages over the air

• When a crash occurs: capture logs, start analysis

• Reboot and repeat
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On-target testing: baseband message parser

000111100110111000101100100100100100100
01110011010010010011000110011001111001101



Many components, e.g., a modem or a bootloader, are hard to test 

on-target (on the device) and difficult to extract for off-target testing.

Can we thoroughly test system-level C/C++ software regardless of the 

component and provide stronger quality guarantees?
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Motivation



• Automatically extract selected critical part of target code

• Create a test harness, called an Off-Target (OT) program

• Test the harness on powerful x86_64 servers

• We can use available toolchain for fuzzing, analysis, debugging, etc.

• In particular, we can run symbex on OT
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AoT: the idea
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Build the target source code (once)
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Extract information about the built modules 
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Extract source Information, including types, 
globals, functions and their dependencies
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Base functions are the functions we want to test
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Recursively pull in all function in a call hierarchy 
of the tested function
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Cut off the code the is outside of the current 
module + generate stubs
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Implementation of cut-off

Foo1

Internal Functions

External Functions

Foo2 Foo3

Foo4

Foo5

Foo8Foo7Foo6

(…)(…)(…)

Base Functions
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Provide program state initialization, e.g. allocate 
memory for pointers
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AoT: overview

Pull Cut-Off Test

Off-Target Creation

Base Functions

Init

Program State
Discovery 

FPs RejectionCAS

Code, Types, 
Globals, 

Functions

ModulesBAS

FTDB

Apply fuzzing, symbolic execution or other 
techniques to test the off-target



KLEE Workshop 2024, Lisbon 63

How does it work in practice?

• Example: test IncrementalFS ioctl handler from AOSP kernel

• 1) Perform the kernel build to obtain CAS databases (once)

• 2) Generate OT for pending_reads_dispatch_ioctl(): ~42s

$ aot.py --config=./cfg.json 
--product=aosp --version=cheetah_android-13.0.0_r66 --build-type=eng 
--functions pending_reads_dispatch_ioctl 
--output-dir=pending_reads_dispatch_ioctl_out 
--db=vmlinux_db_aot.img
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What’s inside OT
// test driver and main header
aot.c
aot.h

// aot libraries & headers
aot_fuzz_lib.c
aot_dfsan.c.lib
aot_mem_init_lib.c
aot_lib.c
aot_log.c
aot_recall.c
aot_replacements.h
fptr_stub.c.template
fptr_stub_known_funcs.c.template
vlayout.c.template

// literals for fuzzing
aot_literals

Makefile

// source files
common_18.c
core_920.c
cpufeature_1345.c
data_mgmt_2430.c
file_1923.c
format_3435.c
fse_compress_20.c
fsnotify_372.c
...
percpu-rwsem_2027.c
pseudo_files_1525.c
read_write_2502.c
rwsem_2924.c
splice_1300.c
strnlen_user_3295.c
tree_3058.c
util_2104.c
verity_1115.c
vfs_2350.c

// stub files
attr_stub_1520.c
auditsc_stub_496.c
common_stub_18.c
core_stub_920.c
cred_stub_767.c
data_mgmt_stub_2430.c
dcache_stub_957.c
filemap_stub_3843.c
...
open_stub_3030.c
percpu-rwsem_stub_2027.c
read_write_stub_2502.c
rwsem_stub_2924.c
srcutree_stub_1825.c
timekeeping_stub_3614.c
tree_stub_3058.c
verity_stub_1115.c
vfs_stub_2350.c
xattr_stub_1884.c
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What’s inside OT
// test driver and main header
aot.c
aot.h

// aot libraries & headers
aot_fuzz_lib.c
aot_dfsan.c.lib
aot_mem_init_lib.c
aot_lib.c
aot_log.c
aot_recall.c
aot_replacements.h
fptr_stub.c.template
fptr_stub_known_funcs.c.template
vlayout.c.template

// literals for fuzzing
aot_literals

Makefile

// source files
common_18.c
core_920.c
cpufeature_1345.c
data_mgmt_2430.c
file_1923.c
format_3435.c
fse_compress_20.c
fsnotify_372.c
...
percpu-rwsem_2027.c
pseudo_files_1525.c
read_write_2502.c
rwsem_2924.c
splice_1300.c
strnlen_user_3295.c
tree_3058.c
util_2104.c
verity_1115.c
vfs_2350.c

// stub files
attr_stub_1520.c
auditsc_stub_496.c
common_stub_18.c
core_stub_920.c
cred_stub_767.c
data_mgmt_stub_2430.c
dcache_stub_957.c
filemap_stub_3843.c
...
open_stub_3030.c
percpu-rwsem_stub_2027.c
read_write_stub_2502.c
rwsem_stub_2924.c
srcutree_stub_1825.c
timekeeping_stub_3614.c
tree_stub_3058.c
verity_stub_1115.c
vfs_stub_2350.c
xattr_stub_1884.c

Targets: afl, aflgo, 
asan, daikon, debug, dfsan, 
GCC fanalyzer, FramaC, gcov, 
klee, msan, symcc, ubsan



KLEE Workshop 2024, Lisbon 66

What’s inside the OT

$ cloc .
Language             files        blank        comment     code
-------------------------------------------------------------------
C/C++ Header         7   1802            776     15691
C                    60   2268           6403     14422

// excluding aot.c

$ cloc . 
Language             files        blank        comment     code
-------------------------------------------------------------------
C/C++ Header         7   1802            776     15691
C                    59   1825           3777     4404

• Types: 4223

• Struct types: 1089

• Globals: 14

• Internal funcs: 251

• External funcs: 90
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Let’s test it!

• Build targets for KLEE and AFL++

• Run KLEE for 1h, then AFL++ with symcc for 1h 

• Results: 47TCs, 8 crashes, including 3 FPs and …
$ ./asan out_dir/default/crashes/id\:000007\,sig\:06\,src\:000044+000009\,time\:2557397\,execs\:2034693\,op\: ...
=================================================================
==3794212==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000005cf1 at pc 0x000000492f60 bp 
0x7ffd1fa48110 sp 0x7ffd1fa478d8
WRITE of size 17 at 0x602000005cf1 thread T0

#0 0x492f5f in __asan_memcpy asan+0x492f5f
#1 0x4c632b in ioctl_get_read_timeouts pseudo_files_1525.c:873:13
#2 0x4c3286 in pending_reads_dispatch_ioctl pseudo_files_1525.c:179:16
#3 0x4c3172 in wrapper_pending_reads_dispatch_ioctl_112617 pseudo_files_1525.c:987:9
#4 0x5620b5 in main aot.c:13079:19
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WARNING: the following slides contain 

source code in a memory-unsafe 

programming language. 
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What’s inside OT

// aot.c
int main(int AOT_argc, char *AOT_argv[]) {

...
// Global vars init
aot_memory_init(&fsnotify_mark_srcu, sizeof(struct srcu_struct),

0 /* fuzz */, 0);
...
// Call site for function 'pending_reads_dispatch_ioctl'
{
struct file *f;
aot_memory_init_ptr((void **)&f, sizeof(struct file), 1 /* count */,

0 /* fuzz */, 0);
...
aot_memory_init_func_ptr(&f->f_mapping->a_ops->readpage,

aotstub_f_f_mapping_a_ops_readpage);
unsigned int req;
aot_memory_init(&req, sizeof(unsigned int), 1 /* fuzz */, 0);

unsigned long arg;
unsigned long *arg_ptr;
aot_memory_init_ptr((void **)&arg_ptr, sizeof(unsigned long), 512,

1 /* fuzz */, "aot_var_1");
aot_tag_memory(arg_ptr, sizeof(unsigned long) * 512, 0);
aot_tag_memory(&arg_ptr, sizeof(arg_ptr), 0);
arg = (unsigned long)arg_ptr;

ret_value = wrapper_pending_reads_dispatch_ioctl_112617(f, req, arg);
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The bug
static long pending_reads_dispatch_ioctl(struct file *f, unsigned int req,

unsigned long arg)
{

struct mount_info *mi = get_mount_info(file_superblock(f));

switch (req) {
case INCFS_IOC_CREATE_FILE:

return ioctl_create_file(f, (void __user *)arg);
case INCFS_IOC_PERMIT_FILL:

return ioctl_permit_fill(f, (void __user *)arg);
case INCFS_IOC_CREATE_MAPPED_FILE:

return ioctl_create_mapped_file(f, (void __user *)arg);
case INCFS_IOC_GET_READ_TIMEOUTS:

return ioctl_get_read_timeouts(mi, (void __user *)arg);
case INCFS_IOC_SET_READ_TIMEOUTS:

return ioctl_set_read_timeouts(mi, (void __user *)arg);
case INCFS_IOC_GET_LAST_READ_ERROR:

return ioctl_get_last_read_error(mi, (void __user *)arg);
default:

return -EINVAL;
}
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The bug

static long ioctl_get_read_timeouts(struct mount_info *mi, void *arg) {
struct incfs_get_read_timeouts_args *args_usr_ptr = arg;
struct incfs_get_read_timeouts_args args = {};
int error = 0;
struct incfs_per_uid_read_timeouts *buffer;
int size;
if (copy_from_user(&args, args_usr_ptr, sizeof (args))) {

return -22;
}
if (args.timeouts_array_size_out > 4096) {

return -22;
}
buffer = kzalloc(args.timeouts_array_size_out, (((gfp_t)(1024U | 2048U)) | ((gfp_t)64U)));
if (!buffer) {

return -12;
}
spin_lock(&mi->mi_per_uid_read_timeouts_lock);
size = mi->mi_per_uid_read_timeouts_size;
if (args.timeouts_array_size < size) {

error = -7;
} else {

if (size) {
memcpy(buffer, mi->mi_per_uid_read_timeouts, size);

}
}
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The bug

static long ioctl_get_read_timeouts(struct mount_info *mi, void *arg) {
struct incfs_get_read_timeouts_args *args_usr_ptr = arg;
struct incfs_get_read_timeouts_args args = {};
int error = 0;
struct incfs_per_uid_read_timeouts *buffer;
int size;
if (copy_from_user(&args, args_usr_ptr, sizeof (args))) {

return -22;
}
if (args.timeouts_array_size_out > 4096) {

return -22;
}
buffer = kzalloc(args.timeouts_array_size_out, (((gfp_t)(1024U | 2048U)) | ((gfp_t)64U)));
if (!buffer) {

return -12;
}
spin_lock(&mi->mi_per_uid_read_timeouts_lock);
size = mi->mi_per_uid_read_timeouts_size;
if (args.timeouts_array_size < size) {

error = -7;
} else {

if (size) {
memcpy(buffer, mi->mi_per_uid_read_timeouts, size);

}
}
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To KLEE, or not to KLEE, that is the question

Hamlet



• Find bugs

• Bootstrap the program state, provide “data virtualization”

• Is that really helping? Let’s check on 4k entry points in AOSP kernel:
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The role of symbex in AoT

KLEE + AFL/symcc AFL/symcc AFL only

# TCs total 50.387 + 73.951 73.750 71.768



• We over-approximate program state values

• This leads to FPs: behaviors that are only possible in the OT code

• In the kernel, a big source of FPs is the system state, not related to 

user-controlled data
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Program state discovery

static long pending_reads_dispatch_ioctl(struct file *f, unsigned int req,
unsigned long arg)



• KFLAT is a novel approach to memory dumps 

• Selectively dumps system memory on the source code level

• The dumps can be restored on a different machine but with the same

code structures
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KFLAT: selective code-level memory dumps



• We collect real memory values on the device and plug them into OTs

• System state is concrete, user data is symbolic / fuzzed

• Also, we could selectively mark data as symbolic if needed

• Advantages: 

• Less over-approximation -> fewer FPs

• Greatly limiting the search space on non user-controlled data
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AoT♭ : AoT + KFLAT



• Makes is possible to execute parts of complex low-level systems

• Enables easy symbex on low-level code

• Symbex enables execution of OT without knowing the program state

• AoT reduces complexity by limiting the executed code size

• AoT provides flexibility on how much data is symbolic 
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AoT: highlights



• We have some other cool projects in Mobile Security Group

• We release our tools to open source

• AoT: https://github.com/Samsung/auto_off_target

• CAS: https://github.com/Samsung/cas

• KFLAT: https://github.com/Samsung/kflat

• SEAL: https://github.com/Samsung/seal
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Mobile Security Group @ SRPOL

https://github.com/Samsung/auto_off_target
https://github.com/Samsung/cas
https://github.com/Samsung/kflat
https://github.com/Samsung/seal


• We give talks 

• DPE Summit’23: https://youtu.be/FZrhHgor4NE?si=4hv77EtI-CZN5E4b

• OSS NA’23: https://youtu.be/Ynunpuk-Vfo?si=i83R6ZANwpXPASet

• LSS NA’22: https://youtu.be/M7gl7MFU_Bc?si=LmLmySHbwINSldCg&t=648

• Interested? Feel free to reach out!
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Mobile Security Group @ SRPOL

https://youtu.be/FZrhHgor4NE?si=4hv77EtI-CZN5E4b
https://youtu.be/Ynunpuk-Vfo?si=i83R6ZANwpXPASet
https://youtu.be/M7gl7MFU_Bc?si=LmLmySHbwINSldCg&t=648


Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex 
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• We propose the following directions:

• Selective

• Open-source

• Approachable

• Real-world
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How can we help symbex SOAR?



 Reasoning: less symbolic data => smaller search space
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S is for Selective

Selectively mark only certain 
bytes / variables as symbolic

Symbolically execute 
selected parts of larger 
systems

by target
by data



• Standing on the shoulders of giants

• Opportunity to converge various “little” tweaks 

• Add-on: peer reviews usually make the end result better

• Caveat: for this to work, forks need to go back to the mainline

• AoT: 2 PRs for KLEE (one in 3.1), 4 PRs for LLVM (DFSAN)
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O is for Open Source



• Mind the audience: some might not have heard of SMT 

• One-liner is king

• Ideally: easy to deploy, easy to use, easy to analyze, easy to extend

• User docs != developer docs (good to have both)
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A is for Approachable



• Real-world users work on real-world targets

• Aim for hard targets: web browsers, embedded, stateful, etc.

• Needed: scalability, ease of deployment
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R is for Real-World



Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex 

KLEE Workshop 2024, Lisbon 87



• Different objectives: research work vs product development

• What people have time working on
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Academia & Industry

translates to



• Academia: 

• Industry has unlimited resources for engineering

• Engineering details can be sorted out easily

• Industry: 

• The paper should work out of the box

• We have the best stuff, not much interesting stuff comes out of Academia
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Common misconceptions



• How are the tools evaluated in the Industry:

• With constrained resources (time & people), often as a side task

• On a specific real-world target

• Either it works or it doesn’t 

• Research contribution might be – sadly – underappreciated

• What should a great symbex tool strive for:

• Ease of use, being straightforward

• Scalability

• The tool outcomes are easy to understand and process
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Academia & Industry



Agenda

• Symbex & others: the state of the art

• Docovery, Shadow & AoT: selective and incremental symbex

• SOAR: in search of the secret sauce

• Academia & Industry: perspectives matter

• Future outlook for symbex 
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• Symbex now more of a boutique approach than commonplace

• If a major breakthrough doesn’t happen (e.g. quantum symbex, 

custom HW, etc.), we need to keep working on the little things that 

add up

• How do we move forward?
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Future outlook for symbex



• Academia: 

• Aim for real-world applications

• Often, a lot of value comes from the little engineering tricks

• Industry:

• Merge changes back to the mainline

• Spend more resources to appreciate research
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Future outlook for symbex
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Symbex’s not dead, Jim

Dr Leonard McCoy, USS Enterprise



• There is no secret sauce – just a lot of engineering 

and small tweaks

• Since we can’t defeat the path explosion problem we need 

to find smart ways around it

• Examples: Docovery, Shadow & Auto Off-Target
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Summary



• We propose the following directions for symbex:

• Selective

• Open-source

• Approachable

• Real-world

• Symbex can and should soar!
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Summary



• The following graphics were used in the slides:
• Image by Freepik

• Image by Freepik

• Image by Harryarts on Freepik

• Image by macrovector on Freepik

• Image by pikisuperstar on Freepik

• Icon by Freepik

• Icon by Freepik

• Image by Freepik

• Image by rawpixel.com on Freepik

• Image by KamranAydinov on Freepik

• Image by starline on Freepik
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