.

An Efficient Black-Box Support of
Advanced Coverage Criteria for Klee

Published in SAC'23, Software Verification and Testing track
Klee workshop, April 15-16, 2024, Lisbon

Nicolas Berthier Nikolai Kosmatov
Steven De Oliveira Delphine Longuet
Romain Soulat

@OCamlﬂ';m THALES

{OPEN}

Only coverage criterion targeted by Klee:
But may be:
if target is instructions or decisions e.g.

if target is a criterion incomparable with all-path
(mutations, limits...)

{OPEN}

Generated tests for ¢ of size 2

t n
Test 1 | |00 0
Test 2 | [0,0] 1
Test 3 | [0,0] 1 | 167
Test 4 | [1,0 2 0
Test 5 | [0,0] 2 | 167

int search (int *t, int n, int v) {
int res = 0, 1 = 0;
while (!res & i < n) {
if (t[i] == v)

res = 1;
i++;
return res; size of t >0
} 0<n<sizeof ¢

. instructions, decisions and conditions
But with more tests than necessary
=» improve Klee efficiency on simple criteria

Not covered: multicondition (res & i < n)
(finding v before the end of a non-empty array)

{OPEN}

Generated tests for ¢ of size 2

t n v int search (int *t, int n, int v) {
int res = 0, i = 0;

Test1 | [00] | O while (lres 8& i < n) {
Test2 | [0,0] | 1 if (t[i] == v)

—— res = 1;
Test 3 | |0,0 1 | 167 i++;
Test 4 | [1,0] 2 0 }
Test 5 | [0,0] 2 | 167 return res; size of t >0

- - } 0<n<sizeof t
Test 6 | |0,0 2 0

. instructions, decisions and conditions
But with more tests than necessary
=» improve Klee efficiency on simple criteria

: multiconditions
But with a complementary assertion
=> improve Klee coverage on criteria incomparable to all-path

{OPEN}

Only coverage criterion targeted by Klee:
But may be:
if target is instructions or decisions e.g.

if target is a criterion incomparable with all-path
(mutations, limits...)

How can we make Klee efficiently support other
coverage criteria without modifying the tool itself?

{OPEN}

[Bardin et al. ICST'14]

Generic approach to represent coverage criteria as source code

annotations by test objectives to be targeted by tools

For a test suite, covering all labels for a criterion = satisfying the

criterion

statementl;
if (x < y)
{...}

statement?2;

statementl;
// 11: x <y
12: 1(x < vy)
if (x < y)
{...}

statement2;

statementl;

// 11: x<y && -1<=x-y && x-y<=1

if (x < y)
{...}

statement?2;

Decision coverage (DC)

label = (location, property)

Boundary coverage (LIMIT)

statementl;

// 11: a != abs(a) (ABS)

// 12: b != abs(b) (ABS)
statementl; // 13: a+b != a-b (AOR)
X = a+b; — " | // 14: a+b != a*b (AOR)
statement2; // 15: a+b != a/b (AOR)

X = a+b;

statement2;

{OPEN}

Weak mutation coverage (WM)

: platform
developed by CEA

(France) for C code
analysis

C program |v—

v

[Bardin et al., SCP'21]

coverage

criterion
|

A

~N

> Frama-C/LAnnotates

l

program

l

label annotated

: plugin
dedicated to labels
(LAnnotate, LUncov, LReplay)

instrumentation

l

program

)

instrumented

: dynamic

PathCrawler

é// symbolic execution tool

developed by CEA (France)

v

test suite

{OPEN}

: platform
developed by CEA
(France) for C code
analysis

\/_
C program |v— COVErage
v— | criterion

~N

A

/

> Frama-C/LAnnotates

l

label annotated
program

l

instrumentation

l

instrumented
program

| Klee I

v

test suite

{OPEN}

: plugin
dedicated to labels
(LAnnotate, LUncov, LReplay)

. addition of a branching condition for each label

Exponential growth of the path space |statementl;

Multiple visits of the same label statement2;

statementl

!

—>

fékel lUHe

statement2

. path ends after visiting a label

: replay of each generated test to delete all

covered labels along the execution path

{OPEN}

Aim of tight instrumentation for Klee
 Add the minimum of paths needed for labels

* Stop exploration as soon as a label is reached

adds a unique symbolic
variable for each label,

not assigned anywhere

NONDET (id)

false

// 1l: expr —>

true
\4

klee assert(!(expr))

Y

forces the generation of klee silent exit(o)
a test where expr holds — —

stops exploration without
generating a test

Benefit: only keep test cases generated for klee_assert (.assert.err)

{OPEN}

Aim of iterative label deletion for Klee

* Avoid targetting a label already covered by a previous test

Replay of a test case immediately after its generation, in parallel of the
test generation process

queries the label status
store for the status of

label id

lcovered(id)

true

// 1l: expr —>

false

klee assert(!(expr))

Y

klee silent exit(9)

A

. condition of a label considered only when necessary (at most
once on a program path and only if the label is not yet covered)

{OPEN}

v —

C program ‘—

coverage
criterion

A 4

Frama-C/LAnnotate

l

label annotated
program

instrumentation
for test generation

}

for test generation

l

Klee

progr. instrumented

v

— | test suite

{OPEN}

v— |coverage
C program v |COVEras
Y—| criterion

/ A 4
Frama-C/LAnnotate

v !
Ej label coverage — |label annotated
status store — | program
; v
instrumentation instrumentation
for test generation for coverage measure

! '

progr. instrumented progr. instrumented
for test generation for cov. measure

g)|

Klee > replay
.
v
v
— _ v|label coverage
— | test suite —
M| report

{OPEN}

github.com/0OCamlPro/klee4labels

e 700 lines of OCaml code

* 300 lines of C for instrumentation macros and library of external
functions

Proprietary optimized version with more advanced implementation of
the label coverage store

of the optimized version of Kleedlabels
1. Higher coverage of labels
2. Reasonable size of generated test suites

3. Reasonable time overhead of test generation

{OPEN}

https://github.com/OCamlPro/klee4labels

Evaluation results

Program (nb loc)

power (18)

tritype (22)

modulus (25)
checkutf8 (74)

tcas (110)

gd_full_bad (156)

Cov. criterion

(nb labels)

decisions (4)

mutations (25)
multicond. (38)
mutations (101)
decisions (8)
mutations (178)
limits (25)
multicond. (66)
mutations (87)
limits (19)

Klee

(cov., nb tests, time)

100%
12%
71%
58%

100%
45%
56%
7%
44%
32%

5
23
23
23
18
33

8.3 s
8.4 s
0.8 s
05s
timeout
2.4 s
20 s
0.4 s
0.6 s
34 s

Opt. Kleedlabels
(cov., nb tests, time)

100%
84%
100%
91%
100%
80%
100%
80%
60%
84%

1.2 s
27 s
1.7s
1.3s
1.2s
18.5s
3.7s
2.2s
3.6s
54 s

{OPEN}

L
1. Higher coverage of labels

Program (nb loc) Cov. criterion Klee Opt. Kleedlabels Diff.
(nb labels) (cov., nb tests, time) (cov., nb tests, time) cov.
power (18) decisions (4) 100% 3 82 s] 100% 2 1.2 s
mutations (25) 12% 3 84s| 84% 7 27 s +72
tritype (22) multicond. (38) 71% 14 0.8s| 100% 24 1.7 s +29
mutations (101) 58% 14 05s| 91% 22 1.3s +33
modulus (25) decisions (8) 100% 5 timeout | 100% 3 1.2s
checkutf8 (74) mutations (178) 45% 23 24s| 80% 44 185 +35
limits (25) 56% 03 20s| 100% 25 37s| +44
tcas (110) multicond. (66) 7% 23 04s| 80% 13 2.2s +3
mutations (87) 44% 18 06s| 60% 18 3.6 s +16
gd_full_bad (156) | limits (19) 32% 33 34s| 84% 16 5.4 s +53

Better to far better coverage for criteria stronger than all-path
All feasible labels are covered

{OPEN}

s
2. Reasonable size of test suites

Program (nb loc) Cov. criterion Klee Opt. Kleedlabels Diff.
(nb labels) (cov., nb tests, time) (cov., nb tests, time) #tests
power (18) decisions (4) 100% 3 8.3s| 100% 2 1.2's x0.7
mutations (25) 12% 3 8.4 s 84% 7 27 s x2.3
tritype (22) multicond. (38) 71% 14 0.8s| 100% 24 1.7 s x1.7
mutations (101) 58% 14 0.5s 91% 22 13s x1.6
modulus (25) decisions (8) 100% 5 timeout [100% 3 1.2s x0.6
checkutf8 (74) mutations (178) 45% 23 2.4 s 80% 44 185 s x1.9
limits (25) 56% 23 20s| 100% 25 3.7s| xll
tcas (110) multicond. (66) 7% 23 0.4s 80% 13 2.2's x0.6
mutations (87) 44% 18 0.6 s 60% 18 3.6s x1.0
gd_full_bad (156) | limits (19) 32% 33 3.4s 84% 16 5.4 s x0.5

More accurate tests, sometimes even fewer tests to achieve better
coverage

{OPEN}

e
3. Reasonable time overhead of generation

Program (nb loc) Cov. criterion Klee Opt. Kleedlabels Diff.
(nb labels) (cov., nb tests, time) (cov., nb tests, time) time
power (18) decisions (4) 100% 3 83s| 100% 2 1.2s x0.1
mutations (25) 12% 3 8.4 s 84% 7 27 s x3.2
tritype (22) multicond. (38) 71% 14 0.8s| 100% 24 1.7s x2.1
mutations (101) 58% 14 05s 91% 22 13s x2.6
modulus (25) decisions (8) 100% 5 timeout | 100% 3 1.2s
checkutf8 (74) mutations (178) 45% 23 24 s 80% 44 18.5s x7.7
limits (25) 56% 23 20s| 100% 25 37s| xL.9
tcas (110) multicond. (66) 7% 23 0.4s 80% 13 22's x5.5
mutations (87) 44% 18 0.6 s 60% 18 3.6s x6.0
gd_full_bad (156) | limits (19) 32% 33 3.4s 84% 16 5.4 s x1.6

timeout = 60 s

Small time overhead for fully satisfiable criteria
Otherwise, time lost on uncoverable labels

{OPEN}

* No need to modify the underlying test generation strategy

* Direct benefit of the various strategies and optimizations of the tool

of basic criteria with
than when Klee is used directly

with a reasonable overhead

* Industrial evaluation on real-life code
* Detecting infeasible objectives prior to test generation
* Support of hyperlabels

* Integration of labels in other white- or gray-box test generation tools

{OPEN}

