
Deferring branches to speed
up symbolic execution

Eric Lu, Eddie Kohler

Motivating observation

● Optimized code patterns can slow down symbolic execution!

● Can we undo those optimizations in the symbolic executor to improve its
performance?

● Example: hash table lookup

Hash table example

● Chained hash table containing concrete values

● find_key is used in lookup:
uint32_t h = hash(key);
...
find_key(table->bucket[h % N], h, key);

● In normal execution, l->hash == hash is fast

● But suppose key is a symbolic string. What happens?

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

Hash table example

● Chained hash table containing concrete values

● find_key is used in lookup:
uint32_t h = hash(key);
...
find_key(table->bucket[h % N], h, key);

● In normal execution, l->hash == hash is fast

● But suppose key is a symbolic string. What happens?

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

hello! I am a
state

Hash table example

● Chained hash table containing concrete values

● find_key is used in lookup:
uint32_t h = hash(key);
...
find_key(table->bucket[h % N], h, key);

● In normal execution, l->hash == hash is fast

● But suppose key is a symbolic string. What happens?

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

h is symbolic!

Hash table example

● Chained hash table containing concrete values

● find_key is used in lookup:
uint32_t h = hash(key);
...
find_key(table->bucket[h % N], h, key);

● In normal execution, l->hash == hash is fast

● But suppose key is a symbolic string. What happens?

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

an expensive fork!
must find hash
preimage

l->hash == h

l->hash != h

Hash table example

● Chained hash table containing concrete values

● find_key is used in lookup:
uint32_t h = hash(key);
...
find_key(table->bucket[h % N], h, key);

● In normal execution, l->hash == hash is fast

● But suppose key is a symbolic string. What happens?

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

an expensive fork!
must find hash
preimage

l->hash != h

more forking in strcmp
(or on a symbolic
strcmp return value)

l->hash != hash &&
keys don’t match

l->hash == h ∧ keys match

l->hash != hash &&
keys don’t match

l->hash == h ∧
keys don’t match

many states
reach end of loop

Hash table example

● Chained hash table containing concrete values

● find_key is used in lookup:
uint32_t h = hash(key);
...
find_key(table->bucket[h % N], h, key);

● In normal execution, l->hash == hash is fast

● But suppose key is a symbolic string. What happens?

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

l->hash != h l->hash != hash &&
keys don’t match

l->hash == h ∧ keys match

l->hash != hash &&
keys don’t match

l->hash == h ∧
keys don’t match

states continue in
next loop iteration

Hash table example

● Chained hash table containing concrete values

● find_key is used in lookup:
uint32_t h = hash(key);
...
find_key(table->bucket[h % N], h, key);

● In normal execution, l->hash == hash is fast

● But suppose key is a symbolic string. What happens?

● How do we undo the optimization in this case?

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if ((l->hash == hash) &
 (strcmp(l->key, key) == 0)) {
 return l;
 }
 l = l->next;
 }
 return NULL;
}

Undoing the optimization

● We can defer the hash equality check until execution
reaches the next condition

● Turn the short-circuit && into &

● Avoid an expensive solver call and eliminate one of
the generated states

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if ((l->hash == hash) &
 (strcmp(l->key, key) == 0)) {
 return l;
 }
 l = l->next;
 }
 return NULL;
}

Undoing the optimization

● We can defer the hash equality check until execution
reaches the next condition

● Turn the short-circuit && into &

● Avoid an expensive solver call and eliminate one of
the generated states

l->hash != hash ∨ keys don’t match

l->hash == h ∧ keys match

Undoing the optimization

● With length-1 l and length-8 key

● Custom eq
int eq(uint8_t *s1, uint8_t *s2) {
 return *((uint64_t *) s1) ==
 *((uint64_t *) s2);
}

● Version with &&:
timeout after 1 hour (trying to solve the hash preimage)

● Version with &:
finishes in 47 ms with 2 paths explored

● Version with a simpler hash (XOR all characters):
finishes in 42 ms with 3 paths explored

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if ((l->hash == hash) &
 eq(l->key, key)) {
 return l;
 }
 l = l->next;
 }
 return NULL;
}

The plan: run a different CFG

hashes
match?

strings
match?

return

next
node

hashes and
strings match?

return
next
node

Treat this... Like this!

The plan: run a different CFG

A

B

Y

X

A ∧ B

Y X

Treat this... Like this!

The plan: run a different CFG

A

B

Y

X

A ∧ B

Y X

Treat this... Like this!

1. Turn two branches into one: fork less
2. Tradeoff: larger queries for fewer paths

● Compile time
○ Identify A && B pattern heuristically
○ Transform to execute as A ∧ B pattern
○ This transformation preserves semantics only when B doesn’t

modify observable state and can’t cause an error (e.g., null
pointer dereference)

○ Difficult to prove absence of errors statically, so rely on run time
checks

● Run time
○ New intrinsics mark start and end of transformed A ∧ B pattern
○ On error in transformed region, check against original A && B

pattern before reporting

The plan: run a different CFG

A ∧ B

Y X

A

B

Y

X

Compile time: transforming short-circuit CFG fragments

A’

B’

Y

X

A

B

Y

X

save branch
condition of A

check A ∧ B

Compile time: transforming short-circuit CFG fragments

A’

B’

Y

X

A

B

Y

X

B

retain copy of original
B and detach
predecessor A

● What if B has other predecessors?

Compile time: transforming short-circuit CFG fragments

A’

B’

Y

X

B

● What if we encounter an error in B’ during
deferral?

● Maybe the error is real and should be reported

● Or maybe the error is a transformation artifact: A
would have branched to X, avoiding the error

● Solution: use defer and undefer intrinsics

● If an error happens in B', fork on the deferred
branch condition A

● Resulting states where A is infeasible should
have gone to X in the first place

○ Jump directly to X

● Represented in CFG as untaken branch A’→X

Compile time: transforming short-circuit CFG fragments

A’

B’

Y

X

B

defer

undefer

LLVM code example
block.A:
 ...
 %condA = ...
 br i1 %condA, label %block.B, label %block.X

block.B:
 ...
 %condB = ...
 br i1 %condB, label %block.Y, label %block.X

block.X: ...
block.Y: ...

block.A:
 ...
 %condA = ...
 call void %klee_defer_next_branch(i32 0)
 br i1 %condA, label %block.B.undefer, label %block.X

block.B.undefer:
 ...
 %condB = ...
 call void %klee_undefer_next_branch(i32 0)
 br i1 %condB, label %block.Y, label %block.X

block.B: ...
block.X: ...
block.Y: ...

A

B

Y

X

A’

B’

Y

X

B

Run time: executing the intrinsics

A

B

Y

X

hello! it’s
me again

A’

B’

Y

X

B

defer

undefer

Run time: executing the intrinsics

A

B

Y

X

A’

B’

Y

X

B

defer

undefer

executor saves condition and
unconditionally jumps to B’

undefer

Run time: executing the intrinsics

A

B

Y

X

executor forks on modified
condition at end of B’

¬A ∨ ¬B

A ∧ B

A’

B’

Y

X

B

defer

Run time: executing the intrinsics

A

B

Y

X

¬A ∨ ¬B

A ∧ B

A’

B’

Y

X

B

behaves
like A ∧ B

Reverting on errors during deferral

A’

B’

Y

X

B

✗

● Suppose state encounters error in B’

Reverting on errors during deferral

A’

B’

Y

X

B

✗

● Suppose state encounters error in B’

● Fork on the deferred branch condition

¬AA

Reverting on errors during deferral

A’

B’

Y

X

B

✗

● Suppose state encounters error in B’

● Fork on the deferred branch condition

● States where A is feasible report a real bug

● States where A is infeasible should have gone to
X in the first place

○ Jump directly to X, as without deferral
¬A

A

How does it do?

How does it do? Hash table example

Recall the example. With a length-1 l and length-8 key as
before:

● Version with && and branch deferral:
finishes in 44 ms with 2 paths explored

● Version with &:
finishes in 47 ms with 2 paths explored

● Version with a simpler hash (XOR all characters):
finishes in 42 ms with 3 paths explored

Branch deferral performs comparably to version with &!

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

How does it do? Hash table example

Recall the example. With a length-8 l and length-8 key on
each node:

● Version with && and branch deferral:
finishes in 82 ms with 9 paths explored

● Version with &:
finishes in 96 ms with 9 paths explored

● Version with a simpler hash (XOR all characters):
finishes in 119 ms with 17 paths explored

Branch deferral performs comparably to version with &!

typedef struct node {
 uint32_t hash;
 uint8_t *key;
 struct node *next;
} node;

node *find_key(node *l, uint32_t h,
 uint8_t *key) {
 while (l) {
 if (l->hash == h) {
 if (strcmp(l->key, key) == 0) {
 return l;
 }
 }
 l = l->next;
 }
 return NULL;
}

How does it do? SQLite

● sqlite-amalgamation-3450100
● 1 hour maximum time
● 30 second solver timeout
● solver: STP with MiniSat
● search: random-path with nurs:covnew
● div-by-zero and overshift checks disabled
● optimizations off!
● 392872 total instructions

○ transformation applied in both cases
○ deferral disabled via disabling intrinsics

● 40% more coverage!

Deferral on off

Covered
instructions

18,672 13,356

Completed paths
(# generated tests)

229 (81) 57 (47)

Solver queries 65,270 51,021

Solver time (s) 3,308 3,207

Instructions
executed

458,089,686 296,394,468

That’s all for now!

Work in progress. We’d like to ask for feedback!

That’s all for now!

Work in progress. We’d like to ask for feedback!

● We’re currently transforming wherever possible. Transforming at some sites may hurt
performance. Where is this likely?

● Measuring which sites most affect performance: how?

● Implementation is not robust to optimization.

● Programs/benchmarks to try?

Conclusion

● We presented branch deferral, an optimization that modifies execution of short-circuit
CFGs to reduce forking.

● Branch deferral helps on microbenchmarks and sqlite.

Hash function (similar to full_name_hash)

#define GOLDEN_RATIO_64 0x61C8864680B583EBull

uint32_t hash(uint8_t *s) {

 uint64_t x = 0;

 uint64_t y = 5381;

 for (int i = 0; i < 8; i++) {

 x ^= s[i];

 y ^= x;

 x = (x << 7) | (x >> 25);

 x += y;

 y = (y << 20) | (y >> 12);

 y *= 9;

 }

 y ^= x * GOLDEN_RATIO_64;

 y *= GOLDEN_RATIO_64;

 return y >> 32;

}

KLEE implementation: speculating on the branch

● klee_defer_next_branch sets a flag
on the execution state

● Upon next branch, store the condition and
transfer unconditionally to B

case Instruction::Br: {
 BranchInst *bi = cast<BranchInst>(i);

 ...

 if (state.deferNext != -1) {

 state.deferredConstraints.emplace_back(
 cond, ...);

 transferToBasicBlock(
 bi->getSuccessor(1 - state.deferNext),
 bi->getParent(), state);

 state.deferNext = -1;

 break;
 }

 ...

A

B

Y

X

defer call before branch!

KLEE implementation: handling the deferred condition

● klee_undefer_next_branch also sets
a flag on the execution state

● Upon next branch, pop the deferred
condition and modify branch condition

case Instruction::Br: {
 BranchInst *bi = cast<BranchInst>(i);

 ...

 if (state.undeferNext != -1) {
 auto record = state.deferredConstraints.back();

 cond = /* compute branch condition */

 state.deferredConstraints.pop_back();

 state.undeferNext = -1;
 }

 ...

 Executor::StatePair branches = fork(state, cond, ...);

 ...

A

B

Y

X
undefer call before branch!

KLEE implementation: handling the deferred condition

● Handle chained short-circuits by handling
undefer before defer.

case Instruction::Br: {
 BranchInst *bi = cast<BranchInst>(i);

 ...

 if (state.undeferNext != -1) {
 ...
 }

 if (state.deferNext != -1) {
 ...

 break;
 }

 ...

 Executor::StatePair branches = fork(state, cond, ...);

 ...

B

C

Y

X

A

defer and
undefer before
branch!

KLEE implementation: reverting on errors during deferral

● If an error is encountered in B block during
deferral, we must check whether it is
actually feasible

● Fork on original deferred condition

● States satisfying the condition have
encountered a real bug

● States not satisfying the condition should
have gone to X in the first place

void Executor::terminateStateOnProgramError(...) {

 if (state.deferredConstraints.size() != 0) {

 auto record = state.deferredConstraints.back();

 state.deferredConstraints.pop_back();

 Executor::StatePair branches = fork(
 state, record.cond, ...);

 if (branches.first) {
 terminateStateOnError(*branches.first, ...);
 }

 if (branches.second) {
 /* transfer to X block */
 }

 }

 ...

