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The many states …



• Every path has a different cost:


• Different number of 
instructions


• Different constraints


• Different costs solving them


• Too many paths

The many states …
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Goal: Fine-Grain Replication of 
Workload

6

… where appropriate



Deterministic State Space 
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Deterministic State 
Space Exploration
Each instruction is executed 
in the same order and by the 
same state.
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char * a = malloc(1024); 
int32 i = symbolic; 

a[i]++; 
if (i != 12345) 
{ 
  a[i-2] = a[i] * 2; 
} else { 
  a[i+2] = a[i] - 2; 
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char * a = malloc(1024); 
int32 i = symbolic; 

a[i]++; 
if (i != 12345) 
{ 
  a[i-2] = a[i] * 2; 
} else { 
  a[i+2] = a[i] - 2; 

  %1 = alloca i8*, align 8 
  %2 = alloca i32, align 4 
  call void @llvm.dbg.declare(metadata i8** %1, metadata !13, metadata !DIExpression()), !dbg !16 
  %3 = call i8* @malloc(i64 noundef 1024), !dbg !17 
  store i8* %3, i8** %1, align 8, !dbg !16 
  call void @llvm.dbg.declare(metadata i32* %2, metadata !18, metadata !DIExpression()), !dbg !20 
  %4 = call i32 (...) @make_symbolic(), !dbg !21 
  store i32 %4, i32* %2, align 4, !dbg !20 
  %5 = load i8*, i8** %1, align 8, !dbg !22 
  %6 = load i32, i32* %2, align 4, !dbg !23 
  %7 = sext i32 %6 to i64, !dbg !22 
  %8 = getelementptr inbounds i8, i8* %5, i64 %7, !dbg !22 
  %9 = load i8, i8* %8, align 1, !dbg !24 
  %10 = add i8 %9, 1, !dbg !24 
  store i8 %10, i8* %8, align 1, !dbg !24 
  %11 = load i32, i32* %2, align 4, !dbg !25 
  %12 = icmp ne i32 %11, 12345, !dbg !27 
  br i1 %12, label %13, label %27, !dbg !28 

13:                                               ; preds = %0 
  %14 = load i8*, i8** %1, align 8, !dbg !29 
  %15 = load i32, i32* %2, align 4, !dbg !31 
  %16 = sext i32 %15 to i64, !dbg !29 
  %17 = getelementptr inbounds i8, i8* %14, i64 %16, !dbg !29 
  %18 = load i8, i8* %17, align 1, !dbg !29 
  %19 = sext i8 %18 to i32, !dbg !29 
  %20 = mul nsw i32 %19, 2, !dbg !32 



Example of its Application
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Example: Evaluate Different Solvers
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Example: Evaluate Different Solvers
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Z3

STP

•80 applications: GNU CoreUtils

•3 different searchers:

•DFS, BFS, Rnd+Cov


•Fixed number of instructions: ~30min


Measure: 
Execution time -> normalised to 30 min 



Solvers: Z3 vs STP
DFS vs. BFS vs. RndCov
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DFS BFS RndCov



BFS as an Example
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Let’s Go Deterministic
BFS
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• The higher the memory load the 
longer the system call fork() 
takes


• KLEE forks() and execute the 
solver in a child process for 
every solver call


• The more memory (i.e., the more 
states) the longer fork() will 
take

A fork() in the road …*
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*Baumann et al. “A Fork() in the Road”, HotOS, 2019
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How to use Deterministic State 
Space Exploration?
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--debug-compress-instructions

--debug-print-instructions=all:file

--istats-write-after-instructions=<uint>



Deterministic State Space Exploration 
⊆ 

Fine-Grain Replication of Workload
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Evaluate Correctness



20

Summary


