
Deterministic State Space
Exploration

Under submission as Special Issue in STTT Journal
Based on 1st RRRR 2022, Workshop, Munich, Germany

Martin Nowack

‘24

2

2

2

3

3

Solver
STP

Solver
Z3

3

Solver
STP

Solver
Z3

./TestApp 1 2 3

3

Solver
STP

Solver
Z3

./TestApp 1 2 3

3

Solver
STP

Solver
Z3

./TestApp 1 2 3
GCov

3

Solver
STP

Solver
Z3

./TestApp 1 2 3
GCov

The many states …

• Every path has a different cost:

• Different number of
instructions

• Different constraints

• Different costs solving them

• Too many paths

The many states …

5

Goal: Fine-Grain Replication of
Workload

6

… where appropriate

Deterministic State Space
Exploration

7

Deterministic State
Space Exploration
Each instruction is executed
in the same order and by the
same state.

8

1.

2.
3.

Deterministic State
Space Exploration
Each instruction is executed
in the same order and by the
same state.

9

1.

2.
3.

Deterministic State
Space Exploration
Each instruction is executed
in the same order and by the
same state.

9

1.

2.
3.

char * a = malloc(1024);
int32 i = symbolic;

a[i]++;
if (i != 12345)
{
 a[i-2] = a[i] * 2;
} else {
 a[i+2] = a[i] - 2;

Deterministic State
Space Exploration
Each instruction is executed
in the same order and by the
same state.

9

1.

2.
3.

char * a = malloc(1024);
int32 i = symbolic;

a[i]++;
if (i != 12345)
{
 a[i-2] = a[i] * 2;
} else {
 a[i+2] = a[i] - 2;

 %1 = alloca i8*, align 8
 %2 = alloca i32, align 4
 call void @llvm.dbg.declare(metadata i8** %1, metadata !13, metadata !DIExpression()), !dbg !16
 %3 = call i8* @malloc(i64 noundef 1024), !dbg !17
 store i8* %3, i8** %1, align 8, !dbg !16
 call void @llvm.dbg.declare(metadata i32* %2, metadata !18, metadata !DIExpression()), !dbg !20
 %4 = call i32 (...) @make_symbolic(), !dbg !21
 store i32 %4, i32* %2, align 4, !dbg !20
 %5 = load i8*, i8** %1, align 8, !dbg !22
 %6 = load i32, i32* %2, align 4, !dbg !23
 %7 = sext i32 %6 to i64, !dbg !22
 %8 = getelementptr inbounds i8, i8* %5, i64 %7, !dbg !22
 %9 = load i8, i8* %8, align 1, !dbg !24
 %10 = add i8 %9, 1, !dbg !24
 store i8 %10, i8* %8, align 1, !dbg !24
 %11 = load i32, i32* %2, align 4, !dbg !25
 %12 = icmp ne i32 %11, 12345, !dbg !27
 br i1 %12, label %13, label %27, !dbg !28

13: ; preds = %0
 %14 = load i8*, i8** %1, align 8, !dbg !29
 %15 = load i32, i32* %2, align 4, !dbg !31
 %16 = sext i32 %15 to i64, !dbg !29
 %17 = getelementptr inbounds i8, i8* %14, i64 %16, !dbg !29
 %18 = load i8, i8* %17, align 1, !dbg !29
 %19 = sext i8 %18 to i32, !dbg !29
 %20 = mul nsw i32 %19, 2, !dbg !32

Example of its Application

10

Example: Evaluate Different Solvers

11

Example: Evaluate Different Solvers

11

Z3

STP

Example: Evaluate Different Solvers

11

Z3

STP

•80 applications: GNU CoreUtils

•3 different searchers:

•DFS, BFS, Rnd+Cov

•Fixed number of instructions: ~30min

Measure: 
Execution time -> normalised to 30 min

Solvers: Z3 vs STP
DFS vs. BFS vs. RndCov

12

DFS BFS RndCov

BFS as an Example

13

Let’s Go Deterministic
BFS

14

Execution 
Time

Let’s Go Deterministic
BFS

14

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

Let’s Go Deterministic
BFS

14

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

Let’s Go Deterministic
BFS

14

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

Let’s Go Deterministic
BFS

14

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

Let’s Go Deterministic
BFS

14

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

• The higher the memory load the
longer the system call fork()
takes

• KLEE forks() and execute the
solver in a child process for
every solver call

• The more memory (i.e., the more
states) the longer fork() will
take

A fork() in the road …*

15

*Baumann et al. “A Fork() in the Road”, HotOS, 2019

The Fixed Version*
BFS

16* Rakadjiev et al, “Parallel SMT Solving and Concurrent Symbolic Execution”, TrustCom 2015

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

The Fixed Version*
BFS

16* Rakadjiev et al, “Parallel SMT Solving and Concurrent Symbolic Execution”, TrustCom 2015

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

The Fixed Version*
BFS

16* Rakadjiev et al, “Parallel SMT Solving and Concurrent Symbolic Execution”, TrustCom 2015

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

The Fixed Version*
BFS

16* Rakadjiev et al, “Parallel SMT Solving and Concurrent Symbolic Execution”, TrustCom 2015

Constraints
Generation
Time

Constraints
Solving 
Time

Execution 
Time

How to use Deterministic State
Space Exploration?

17

--debug-compress-instructions

--debug-print-instructions=all:file

--istats-write-after-instructions=<uint>

Deterministic State Space Exploration
⊆

Fine-Grain Replication of Workload

19

Evaluate Correctness

20

Summary

