
Automating Differential Testing with
Overappoximate Symbolic Execution

Richard Rutledge, Alessandro Orso

Automating Differential Testing with
Overappoximate Symbolic Execution

Richard Rutledge, Alessandro Orso[...] the outage was due
to an upgrade of the

company’s Web site [...]

Automating Differential Testing with
Overappoximate Symbolic Execution

Richard Rutledge, Alessandro Orso[...] the outage was due
to an upgrade of the

company’s Web site [...]

Automating Differential Testing with
Overappoximate Symbolic Execution

Richard Rutledge, Alessandro Orso[...] the outage was due
to an upgrade of the

company’s Web site [...]

Regression Testing

Test Runner &
Oracle Checker

Regression
Errors

P0

P1

Program
Versions

Regression Testing

Test Runner &
Oracle Checker

Regression
Errors

P0

P1

Program
Versions

Regression Testing

Test Runner &
Oracle Checker

Regression
Errors

P0

P1

Program
Versions

Regression Testing

Test Runner &
Oracle Checker

Regression
Errors

Issues with regression test suites
➔ Focus on core behavior
➔ Provide limited coverage
➔ Use approximated oracles
➔ Sometimes not present at all

P0

P1

Program
Versions

First “Intuition”: Input Generation

Test Runner &
Oracle Checker

Regression
Errors

Issues with regression test suites
➔ Focus on core behavior
➔ Provide limited coverage
➔ Use approximated oracles
➔ Sometimes not present at all

P0

P1

Program
Versions

Input
Generation

● Inherent limitations
● Oracle problem

Second Intuition: Limited Scope and Differential Testing

Focused input generation
 +
P0 as oracle

➔ focus on changed code
➔ thorough coverage
➔ no need for oracles

Test Runner &
Oracle Checker

Regression
Errors

P0

P1

Program
Versions

Input
Generation

Second Intuition: Limited Scope and Differential Testing

Focused input generation
 +
P0 as oracle

➔ focus on changed code
➔ thorough coverage
➔ no need for oracles

Usage scenario: frequent use
(e.g., every save or before
merge into release branch)

Test Runner &
Oracle Checker

Regression
Errors

P0

P1

Program
Versions

Input
Generation

Overapproximate Differential Regression Testing
(ODiT) Overview

Change
Identification

Input
Generation

Behavior
Comparison

Difference
Analysis

P0

P1

Entry Points

Changed Stmts

Test Inputs

Ranked Diffs Raw Diffs

Change
Identification

Input
Generation

Behavior
Comparison

Difference
Analysis

𝚫𝞂

𝚫

𝚫

Change Identification

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1Entry Points Entry Points

Input Generation: Underconstrained SymEx

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0 & 1 Input Generation

4

Input Generation: Input Selection

11

12

13

1615

1, 2, 3, 5, 2, 6

1, 2, 3, 4, 5, 2, 6

1, 2, 3, 5, 2, 3, 4, 5, 2, 6

1, 2, 6

block Control Flow Graph (CFG) Input execution paths:

𝚫

Behavior Comparison: Replay

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1input

Behavior Comparison: Replay

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1input

Behavior Comparison: Replay

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1input

Behavior Comparison: Replay

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1input

Behavior Comparison: Replay

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P0

getbyte

writebytes

outputhash

main

putbyte

block

initbuffer compress

P1input

Behavior Comparison: Alignment and State

P0 P1

block

output

putbyte

writebytes

writebytes

foo

block

output

writebytes

bar

writebytes

putbyte

Alignment
● algorithm based on longest

common subsequences

Address space elements compared:
● termination
● returning function value
● global variables
● output streams
● output parameters

Difference Analysis

● Group differences by 𝚫 program elements

● Dependent differences based on co-occurrence

● Rank by distance from changed code in the dynamic call sequence.

𝚫 return value of foo()

int x;
int bar() {
 x = foo();
}

root difference = 𝚫 ret foo()

2: foo(), same1(), same2(), same3(), … , sameN() ⇾ 𝚫 y

1: foo() ⇾ 𝚫 x

𝚫 x ⇾ 𝚫 ret foo()

foo() modified Rank
1. 𝚫 y
2. 𝚫 x

Evaluation: Implementation and Research Questions

Implementation
● Program analysis and differencing: clang & llvm
● Symbolic execution engine: forked from KLEE 1.3

Research Questions
● RQ1: Can ODiT detect and effectively rank regressions?
● RQ2: How does ODiT, which overapproximates behavior, compare to

a tool that underapproximates behavior?
● RQ3: How does ODiT perform on refactored code?

Evaluation: Setup and Benchmarks

RQ1
● CoREBench: coreutils,

find, and grep
● Bug oracles to compute

TPs and FPs

RQ3
● Redis

program CoREBench IDs LOC

rm 1 1044
cut 3, 6, 12, 17, 21 519
tail 4, 5, 16 1039
seq 7, 8, 9, 18, 19, 20 254
cp 10 2498
ls 13, 14 3106
du 15 624
expr 22 583
find 23 - 37 8,738
grep 38 - 52 6,153

redis N/A 121,989

CoREBench Selection

We considered the 70 CoREBench regressions, omitting those
● requiring 32-bit compilation
● using unsupported multibyte locales
● redundantly resulting from the same defect
=> this eliminated 9 of the 70 regressions)

We then analyzed the remaining 61 regressions to identify those for
which we could reliably define a ground truth (bug oracle)
=> 43 regressions

RQ1: Detection and Ranking
benchmark inputs diffs TP FP precision rank
01-rm 671 0 0 0 - N/A
03-cut 30641 5 0 5 0.0 % N/A
04-tail 11407 1 1 0 100.0 % 1
05-tail 8311 1 0 1 0.0 % N/A
06-cut 3198 5 2 3 40.0 % 1
07-seq 13427 2 1 1 50.0 % 1
08-seq 14088 3 1 2 33.3 % 2
09-seq 15248 2 2 0 100.0 % 1
10-cp 4239 0 0 0 - N/A
12-cut 28606 7 3 4 42.9 % 3
13-ls 13062 3 2 1 66.7 % 1
14-ls 10186 10 10 0 100.0 % 1
15-du 1402 10 8 2 80.0 % 1
16-tail 8296 1 0 1 0.0 % N/A
17-cut 28573 7 3 4 42.9 % 3
18-seq 15248 2 2 0 100.0 % 1
19-seq 8533 3 1 2 33.3 % 3
20-seq 15250 2 2 0 100.0 % 1
21-cut 18841 11 11 0 100.0 % 1
22-expr 2644 1 1 0 100.0 % 1

benchmark inputs diffs TP FP precision rank
23-find 2552 67 1 66 1.5 % 67
24-find 22994 3 0 3 0.0 % N/A
26-find 180975 65 10 55 15.4 % 1
27-find 7771 1 0 1 0.0 % N/A
28-find 89420 4 0 4 0.0 % N/A
30-find 35945 7 7 0 100.0 % 1
31-find 180873 64 10 54 15.6 % 1
32-find 52459 9 2 7 22.2 % 1
33-find 52268 9 2 7 22.2 % 1
34-find 34835 7 0 7 0.0 % N/A
36-find 68074 4 0 4 0.0 % N/A
37-find 89012 2 2 0 100.0 % 1
38-grep 4583 8 5 3 62.5 % 2
41-grep 27704 51 0 51 0.0 % N/A
42-grep 2965 15 13 2 86.7 % 1
44-grep 586 0 0 0 - N/A
45-grep 3142 1 0 1 0.0 % N/A
46-grep 9069 5 3 2 60.0 % 2
47-grep 25758 22 0 22 0.0 % N/A
48-grep 25918 16 0 16 0.0 % N/A
49-grep 58 0 0 0 - N/A
51-grep 168 13 0 13 0.0 % N/A
52-grep 2012 3 3 0 100.0 % 1

● In 58% of the cases, actual regressions in Top-3 (often Top-1)

● In 47% of the cases, FPs ranked higher than TPs

● In 33% of the cases, no false positives

RQ1: Detection and Ranking
benchmark inputs diffs TP FP precision rank
01-rm 671 0 0 0 - N/A
03-cut 30641 5 0 5 0.0 % N/A
04-tail 11407 1 1 0 100.0 % 1
05-tail 8311 1 0 1 0.0 % N/A
06-cut 3198 5 2 3 40.0 % 1
07-seq 13427 2 1 1 50.0 % 1
08-seq 14088 3 1 2 33.3 % 2
09-seq 15248 2 2 0 100.0 % 1
10-cp 4239 0 0 0 - N/A
12-cut 28606 7 3 4 42.9 % 3
13-ls 13062 3 2 1 66.7 % 1
14-ls 10186 10 10 0 100.0 % 1
15-du 1402 10 8 2 80.0 % 1
16-tail 8296 1 0 1 0.0 % N/A
17-cut 28573 7 3 4 42.9 % 3
18-seq 15248 2 2 0 100.0 % 1
19-seq 8533 3 1 2 33.3 % 3
20-seq 15250 2 2 0 100.0 % 1
21-cut 18841 11 11 0 100.0 % 1
22-expr 2644 1 1 0 100.0 % 1

benchmark inputs diffs TP FP precision rank
23-find 2552 67 1 66 1.5 % 67
24-find 22994 3 0 3 0.0 % N/A
26-find 180975 65 10 55 15.4 % 1
27-find 7771 1 0 1 0.0 % N/A
28-find 89420 4 0 4 0.0 % N/A
30-find 35945 7 7 0 100.0 % 1
31-find 180873 64 10 54 15.6 % 1
32-find 52459 9 2 7 22.2 % 1
33-find 52268 9 2 7 22.2 % 1
34-find 34835 7 0 7 0.0 % N/A
36-find 68074 4 0 4 0.0 % N/A
37-find 89012 2 2 0 100.0 % 1
38-grep 4583 8 5 3 62.5 % 2
41-grep 27704 51 0 51 0.0 % N/A
42-grep 2965 15 13 2 86.7 % 1
44-grep 586 0 0 0 - N/A
45-grep 3142 1 0 1 0.0 % N/A
46-grep 9069 5 3 2 60.0 % 2
47-grep 25758 22 0 22 0.0 % N/A
48-grep 25918 16 0 16 0.0 % N/A
49-grep 58 0 0 0 - N/A
51-grep 168 13 0 13 0.0 % N/A
52-grep 2012 3 3 0 100.0 % 1

RQ2: Compare with Shadow
benchmark ODiT Shadow
01-rm ✘ ✘

03-cut ✘ ✘

04-tail ✔ ✘

05-tail ✘ ✔

06-cut ✔ ✔

07-seq ✔ ✘

08-seq ✔ ✘

09-seq ✘ ✘

10-cp ✘ ✔

12-cut ✔ ✔

benchmark ODiT Shadow
13-ls ✔ ✔

14-ls ✔ ✘

15-du ✔ ✘

16-tail ✘ ✔

17-cut ✔ ✔

18-seq ✔ ✘

19-seq ✔ ✘

20-seq ✔ ✘

21-cut ✔ ✔

22-expr ✔ ✘

● ODiT detected about twice as many regressions as Shadow.

● But, as cost of potential false-positives.

RQ2: Compare with Shadow
benchmark ODiT Shadow
01-rm ✘ ✘

03-cut ✘ ✘

04-tail ✔ ✘

05-tail ✘ ✔

06-cut ✔ ✔

07-seq ✔ ✘

08-seq ✔ ✘

09-seq ✘ ✘

10-cp ✘ ✔

12-cut ✔ ✔

benchmark ODiT Shadow
13-ls ✔ ✔

14-ls ✔ ✘

15-du ✔ ✘

16-tail ✘ ✔

17-cut ✔ ✔

18-seq ✔ ✘

19-seq ✔ ✘

20-seq ✔ ✘

21-cut ✔ ✔

22-expr ✔ ✘

RQ3: Refactored Code

category count inputs diffs
comment 8 N/A 0
data 5 unsupp 0
api 2 0 0
behavior 28 N/A 23
refactoring 10 7852 0

commit inputs diffs
de8fdaacf 906 0
43ebb7ee0 0 0
edc47a3ad 6898 0
3761582ff trivial 0
50222af5f 2 0
b49bcd01d trivial 0
90b52fde5 trivial 0
1c637de98 trivial 0
88805cbb3 0 0
4c4f50e1c 46 0

● Collected all commits to Redis 5.0.0–5.0.1
● Eliminated irrelevant commits

(no changes to relevant source code)
● Manually categorized remaining 53 commits

ODiT produced no false-positives for these refactorings

RQ3: Refactored Code

category count inputs diffs
comment 8 N/A 0
data 5 unsupp 0
api 2 0 0
behavior 28 N/A 23
refactoring 10 7852 0

commit inputs diffs
de8fdaacf 906 0
43ebb7ee0 0 0
edc47a3ad 6898 0
3761582ff trivial 0
50222af5f 2 0
b49bcd01d trivial 0
90b52fde5 trivial 0
1c637de98 trivial 0
88805cbb3 0 0
4c4f50e1c 46 0

● 53 updates to Redis, from prior to
5.0.0 through 5.0.1

● Building commits that changed a
program source file

● Manual inspection to categorize each
commit

Conclusion

Results

33

bklee

bklee

- Automatically identified >50% known regressions
- Reported higher ranked FP in only 18/43 cases

Results

34

bklee

bklee

Outperformed state-of-the-art
technique used as a baseline.

