Symbolic PathFinder — Symkolic Execution and
Probabilistic Reasoning

Corina Pasareanu, CMU CyLab/NASA Ames

Software Salety and Security

* Software systems become more pervasive and complex

+ |Increased need for techniques and tools that ensure
safety and security of software systems

+ Research interests:
* developing automated verification techniques and
+ their application at all phases of software development

+ poth theoretical foundations and practical tools

Approaches to finding errors

+ Testing

* Well accepted technique

X3 May miss errors

* Model checking
+ Automatic, exhaustive

Scalability issues

Static analysis
+ Automatic, scalable

* Reported errors may be spurious

Symbolic Execution

Systematic program analysis technique — King [Comm. ACM 1976], Clarke [IEEE
TSE 1976]

* Executes programs on symbolic inputs — represent multiple concrete inputs

* Path conditions — conditions on inputs following same program path
Check satisfiability — explore only feasible paths

“ Solve path conditions: obtain test inputs

* Bounded execution

* Many applications: test-case generation, error detection, ...
¢ Many tools: SAGE, DART KLEE "Pex, Bitblaze |
Symbolic PathFinder

Example Concrete Execution

Code that swaps 2 integers Concrete Execution Path
int X, y; x=1,y=0
. ¢
if x>y){ 1 >0 ?true

'jf L
X=X+YV; - x=1+0=1
| ﬂﬁﬁj L
y=X-Y: y=l—=)
I 'ﬁl 5
X=X-Y; - x=1-1=0
: \;
if (Xx>vy) 0>1 ?false
assert false; |
}

Example Symbolic Execution

Code that swaps 2 integers Symbolic Execution Tree
/path condition
int X, y; \,[PC:true]x =Xy = Y\‘
J
if x>y){ \[PCtrue]X>Y‘7
lese — T — true} \
X=X+Y; [PC:X<YJEND |[PC:X>Y]x= X+Y
V.
y=Xx-Y%, [PC X>Y]PI X+Y-Y = X
X=X-Y; [PC: X>Y]i< X+Y-X=Y
if (x>y) \[Pc X>Y]Y>X ?
false- falge txue
assert false; [PC: X>YAY_X]END\ [PC: X>YAY>X]END
) False!

Solve PCs: obtain test inputs

Another Example

void test (int n) {
WALE =0
while (x<n)

x=x+1;

example code

void test(int n) {
int x = 0;
while(x < n)
=t s

Loops

infinite symbolic execution tree

n:S
PC:true
n:S,x:0
PC:true
n:S,x:0 n:S,x:0
PC:0<S PC:.0>=S
n:S,x: |
PC:.0<S
n:S,x:| n:S,x: |
PC:0<S A I<S PC:0<S A I>=S

!

Symbolic PathFinder

int X,y,z; [PC: true] x=X,y=Y

* Symbolic execution tool for Java
bytecode

IfF(x<vy) [PC: true] X<¥Y?

true

* Lazy initialization for input data
structures and arrays

.......................... [PC: xch] 2=Y

* Handles multi-threading and string
operations

* Supports quantitative reasoning

data/scheduling

2% C . h l.b d 1 heuristics observanon
Y Omes W].t 1 I'aI' y mO e S ||brary choice vm verification report
verification target | abstraction generator listener error path
{Java bytecode ..
S . . program) S;ﬁefa:slhmdéo eventi.wait_for_event()
.|ava: “wall | B
* Enables symbolic execution to start at R
Vlrtual Machine mgnt "1 Step #14 Thread #1
° . » wait_1 M
Z any pomt” ol s
Thread: Thread-0 readstacs

at java.lang.Ooiect.wat(javalang/Oyect java:429)
at Event.wait_for_event(oldciassic.|ava37)

O

* Uses machine learning to infer “unit
preconditions” based on concrete runs

Three;..i: Thread-1

error-path at java.lang.Ooyect.wat(javalang/Oyect java:429)
at Event.wait_for_event(oldclassic.|ava:37)

property 1 Error Found: Deadiock
violation |

property search
checker listener

system/ search
apps observation

6—‘

https://github.com/SymbolicPathFinder/jpf-symbc

T'est Generation for NASA Applications

NASAocontrol software: onboard abort OAPF structure

executive (OAE) [ISSTA’08]
* manual testing: time consuming ~ 1 week Inputs
* guided random testing could not obtain full l

iy Checks Flight Rules

& to see if an abort must occur

* SPF generated ~200 tests to obtain full I

coverage <lmin Select Feasible Aborts
“ Flight rules covered 27 /27 Pick Highest Ranked Abort

+ Aborts covered 7/7

* Size of input: 27 values/ test case

* Found major bug in new version

Handling Data Structures

Lazy initialization [TACAS’03,ISSTA’04] — nondeterminism

handles aliasing

class Node {
int elem;

Node next;

Node swapNode() {
sfnavt 1= oudl,

if (elem > next.elem) {

Node t = next;
next = t.next;
t.next = this;
return t;

}

return this:

}
}

I NullPointerException ‘
+ Constrainf

...
-

null none —»

...Q..Q'.0.00COC‘000000..0000..0’9.'.OIQOl00000000000.00.0009.0...O."OOC‘OOOOO'O.Q.QO’

E0—ED) EO>El >

05 Bl = @'@

0..00 000000000000000000000000

00

Lazy Ininalization

consider executing
next = t.next;

next next
€D,

nex n; next — next — nex ne next
|
: 2

\ ®
>

-

| 4

| ix

| =

| £

‘ —_—

]

@

| (D

|)
S

‘ (D

' >

1

|

| *

|

Dynamic Symbolic Execution/Concolic Testing

« collect symbolic constraints during concrete executions
#* DART = Directed Automated Random Testing

Concolic = Concrete /symbolic testing

* P. Godefroid, K. Sen and many many others ...

“ very popular, simple to implement

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
e B | e
if x>y){
X=X+4Yy;
Y= X N
X=X-Y.
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y){ x<y
Stk Solve: !(x<y)
V=R Solution: x=1, y=0
X=Xy
if (x>vy)

assert false;

} G x=0,y=0

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; — Szilseysl?;,b;ﬁc
if x>y){
== N
=N
X=X—-Y;
if (x>y)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if x>y){ x>y
G x=1y=0
X=X+1Y;
y=X-Y%;
X=X—-Y;
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y) { x>y
X=X+Y;
D e x=1,y=0 Xx=xty
y=X-Y;
X=X-Y;
if (x>y)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if (x>y) { x>y
X —X:-LVy:
y=X-Y; ATA
— x=1y=1 y=x
X=X-Y,;
if (x>y)

assert false;

Dynamic Symbolic Execution/Concolic Testing

Concrete Symbolic Path
Execution Execution Constraint
int X, y; create symbolic
variables x, y
if(x>y){ x>y
X=X+YV;
Y=%=V;
Yy=X
X =X =¥
<t x=0,y=1 X=Yy
if (x>vy)

assert false;

Dynamic Symbolic Execution/Concolic Testing

int X, y;

if x>vy){
XXy
y=X-Y;
X=Xy
if (x>y)

assert false;

Concrete Symbolic Path
Execution Execution Constraint
create symbolic
variables x, y
X2y

Solve: x> y AND !(y=Xx)

Impossible: DONE!
y=X

A=Y

x=0,y=1

Complexity Analysis

+ Problem

+ Estimate the worst-case

a7
R Ta\NS

DARPA STAC

complexity of programs
“ Applications

* Finding vulnerabilities related
to denial-of-service attacks

* Guiding compiler optimizations

* Finding and fixing performance
bottlenecks in software

Symbolic Complexity Analysis

» Computes inputs that expose worst-case behavior

* Computes bounds on worst-case complexity

* Simple approach

“ Perform symbolic execution over the program — compute cost of each path

Return the path with largest cost

* Has scalability issues

* Symbolic execution guided by path policies [ICST'17]

“ Encode choices along worst-case path

“ Intuition: worst-case behavior for small input can predict worst-case behavior for

larger input

hutps://github.com/isstac/ spf-weca

Guided Symbolic Execution

+ Policy Generation

; : Java Policy Generation
+ Exhaustive symbolic bytecode
; : n=3 ., | Guidance Policy
execution at small input N
size(s) v L
: . . : Worst C

3 Compute path Wlth largest Cost E)L ,.? PO'ICY Guided Exploratlon Estimztr::i b:)ilends

cost "

_I Worst Case

* Build policy based on ‘_L"’!Ly\l

decisions taken along that

path

* Policy Guided Execution

» Symbolic execution for

increasing input sizes * Function fitting

« Explore only paths that * Computes estimate of worst-case behavior as a function of
conform with policy input size

+ For each input size compute * Gives lower bounds on worst-case complexity for any size

path (and input) with largest
cost Guessed bounds can be proved using a resource analysis

Path Policies

* Decide which branch to execute for the conditions in the program

* Similar to e.g. [Burnim et al. ICSE’09, Zhang et al. ASE"11]

* New

* History aware: take into account the history of choices made along a path to decide which
branch to execute next

* Context preserving: the decision for each condition depends on the history computed with
respect to the enclosing method

* Symbolic execution, guided by policies, can reduce to exploring a single path regardless of input size
* Scales far beyond non-guided symbolic execution and outperforms previous techniques

* Theoretical guarantee: when policies are “unified”, worst-case path policy is eventually found

+ Unification over policies obtained for successive small inputs

* For each condition: take union over decisions specified by each policy

18 class String {
FExample 1o hart) vnlg.
s i ; : 20 // ...
Hash collisions organized in a list 21 public boolean equals(Object oObj) {
22 /] ...
23 String o = (String) o0bj;
Ce 24 if (val.length == o.val.length) {
/7 Entry findEntry(String o,) { 25 for(int i=0; i<val.length; i++) {
8 for(Entry e = 1; e!=null; e=e.next) { |26 if (val[i]!=o.vall[i])
9 if (e.key.equals(o)) { 27 return false;
10 return e; 28 }
11 } 29 return true;
12} 30 }
e 31 return false;
16 return null; 32}
17 } 33 }
Jalse : Q] : . 1 1:21 ;7 - TN >,
(e, false) (<, false) (c, faise) (c, false) 223 ! . .
false B g Regresswn ana1y51s
et] o false)] (e false)] I I 1 T T
Jalse 1:24 (val.length == o.val.length) o Memorylessi—15
3 3 3 .
(c, false) (c, false) 900 || * History-Based;—s
cee . - true Ck:lS(n) = 15n
(c.faise}], (c, false)
Policy p =), t:25 (i < val.length) 1:31 150 -
(c, false) o
= S100 |
K v alse
. retum decision , 50 1
consult g~ _ _ _ _
1:26 (¢ : valli] # o.val[i]
0 -
” J | | | |
ol Jals 0 5 10 15

Case Study: TextCruncher Sort

* Text processing application with various filters, e.g. WordCount, NGramScore
* Found vulnerability in sorting algorithm

* Triggered by files with 3 x n different words: 6000 words: 5 min; 6001 words: few secs.

Worst Case Prediction Model

From DARPA STAC

10 12 14 16
Input Size

Vulnerability: exponential for lists of length nx3

Probabilistic Reasoning

“ Extension of symbolic

execution with probabilistic
reasoning [[CSE’13,PLDI'14]

+ Computes the probability of a
target event, under an input
distribution

* Model counting over
symbolic constraints

“ Latte, Barvinok -- integer linear
constraints, finite domain

Probabilistic Reasoning

* E.g. assuming uniform distribution,

+ Compute path conditions that lead to target event
* Count the number of input values that satisfy the corresponding path conditions

* Divide it by the size of the input domain (#D)

Probability of event e (PC; leads to e):

p(e) = 5 > #PC;

Example

input domain 100 x 100
discountedPressure <=80 discountedPressure >80
4
80% :
spinSpeed<=70 spinSpeed>70
[
14% 6% PC: spinSpeed>70 &

discountedPressure >80

PrFall) —#(PCY/ D
= #(spinSpeed>70 & discountedPressure >80)/D
=30 20/ 10000=6%

Software Reliability

“ Probability of successful termination under stochastic environment assumptions

* Perform bounded symbolic execution: results in three sets of paths

= Success (PCs): lead to successful termination
+ Fail (PCs): lead to failure
+ Grey (PCs): “don’t know”

“ For given usage profile UP: Pr(Fail | UP) = Pr(PCs | UP), e.g. for uniform UP:

 Pr(Fail)= #(PC)/D= #(spinSpeed>70 & discountedPressure >80)/D= 30 x 20/10000=6 %.

“ Pr(Success) and Pr(Grey) are computed similarly

Pr(Fail)+Pr(Success)+Pr(Grey)=1
¢ Reliability = Pr(Success)

* Confidence =1 - Pr(Grey) (“1” means that analysis is complete)

Usage Profiles

N Weak
%, Strong

[5.10] (10.15]

[-15.-10) [-10.-5

5.5

p—

e
oy
B~
=Y

@
@
(@]
~—t

“ Arbitrary UPs — handled through discretization
* UPs can be seen as “pre-conditions”

+ Continuous input distributions [FSE’15]

Computing with usage profiles

« Usage profile: set ot pairs <c;, pi>

* ¢j— usage scenarlo, constraint on inputs

“ p;— probability that the input is in c;

Rel = Pr’(P) =) Pr(PC; | UP) =

:ZZP"(PCHCj)'PJ ZZ
i j

(PCS/\CJ)

f(cj)

Model Counting

« Latte, Barvinok -- integer linear constraints, finite domain —

Polynomial in number of variables and constraints
+ Omega Lib used for algebraic simplifications

+ Qptimizations: independence, caching

+ Research on

+ model counting for data structures [SPIN’15],
» strings [FSE'16] — ABC Solver (UC Santa Barbara)

+ non-linear constraints [NFM’17]

Model Counting for Data Structures

* SPF pertorms lazy initialization

* Computes Heap PC

« Explicit enumeration using Korat (MIT)
* Arbitrary complex predicates

“ E.g. “acyclic lists of integers with size smaller than the
largest contained value”

Mult-threading

“ Enumerate all possible schedules (using model checking, partial order
reduction)

“ Compute best/worst “reliability”
“ Report best/worst schedule

* Usetul for debugging

“ Tree-like schedules

* Monte-Carlo sampling of symbolic paths
“ Reinforcement learning to iteratively compute schedules

Usage profiles summarize hundreds of hours of operation/
simulation

Application: Onboard Abort Executive

NASA control software
Mission aborts
3754 paths, 36 input sensors

30 usage scenarios

:.', <) A g)}l/
“_-'v) 1 { /,}/

. L ;‘)
iy ‘- 2 f/ A/// " /’

Execution time: 20.5 sec

Checking for “no aborts”
Rel— 12999999

Beyond Finite Domains

“Probabilistic symbolic execution
“ Arbitrary constraints
*Continuous input distributions
*Unbounded domains

““Iterative Distribution-Aware Sampling for Probabilistic Symbolic

Execution” — Mateus Borges, Antonio Filieri, Marcelo D’ Amorim, Corina
S. Pasareanu, ESEC/FSE 2015

Side-Channel Analysis

boolean verifyPassword(byte [] input,

+ Side-channel attacks byte [] password) ff
72 . for (int i = 0; i < SIZE; i++) {
* recover secret inputs to programs from it (password[1 1 != input[i 1)
non-functional characteristics of return false ;

; Thread.sleep(25L);
computations }

s : return true;
“ time or power consumption, number of)

memory accesses or size of output files

“ An attack on “main” channel: exponential
* On “side channel”: linear

Side-Channel Analysis

Non-interference — too strict
Quantitative Information-Flow Analysis (QIF) to determine information leakage

Perform symbolic execution (high and low symbolic)
Collect all symbolic paths — each path leads to an observable

Side channels produce a set of “observables” that partition the secret
Cost model for observables: execution time, number of packets sent/received over network, etc.

O = {01,092,...0m},

Quantifying Information Leakage

Channel Capacity CC(P) = log2(|0|)

Shannon Entropy H(P) = — Z p(o;) log,(p(0;))

i=1l.m

Computing Shannon Entropy

H(P)=—) p(0:)log,(p(0;))

i=1m

* Use symbolic execution and model counting
ICSE 16 ESE 16 CSE 7]

Example

//“high” range: 1..10
if(high > 7)

. cost = 1;
else

. cost = 2;

Channel capacity:
log2(2)=1 bit

Shannon Entropy:

-0.3 10g2(0.3) -0.7 log2(0.7)=

0.3 *1.736966 + 0.7 * 0.514573=
0.8812909 bits

Symbolic

execution

>

Q

high>7
01=coslt 1

p(01)=0.3

4

O

high<7
02=C0St 2

p(02)=0.7

Password Example

// 4-bit input and password; D=256

boolean verifyPassword(byte [] input,
byte [] password) {

for(int 1 = 0; i1 < SIZE; i++) {

if (password[i]'!'=input[i])

return false ;
Thread.sleep (25L) ;
}

return true;

}

// 4-bit input and password; D=256
boolean verifyPassword(byte [] input,
byte [] password) {
boolean matched=true;
for(int 1 = 0; 1 < SIZE; i++) {
if (password[i]'!'=input[i])
matched=false ;
else
matched=matched;
Thread.sleep (25L) ;
} return matched; }

» 5 paths

= h[0]!=I[0] returns false: 128 values

« h[0]=I[0] & h[1]!=I[1] returns false:
64 values

s Tl OI=U O &L =T Gl =T)
returns false: 32 values

+ h[0]=1[0] & h[1]=1[1] & h[2]=1[2] &
h[3]!=I[3] returns false: 16 values

« h[0]=I[0] & hi1]=I[1] & h[2]=I[2] &
h[3]=I[3] returns true: 16 values

Observable is time: H=1.875
Observable is output: H=0.33729

Maximizing lL.eakage

void example (int lo, int hi) {

if (10<0) {

i£(hi<0) cost=1; * using symbolic low value over-
else if (hi<5) cost=2; :

else cost=3; approximates leakage

}
else {

LF(hi>l) cost=d; * example: 5 possible observables; 10<0:

}else cost=5; 3 observables, 10=0: 2 observables

}

/
0‘0

Goal: find low input that maximizes number of observables
(channel capacity)

R/
L X4

Shows most powerful “attack” in one step

R/
0‘0

Shows most vulnerable program behavior

Maximizing Leakage using MaxSM'T

void example (int lo, int hi) { | * MaxSMT solving — generalization of SMT to

if (10o<0) { optimization

if (hi<0) cost=1;

else if (hi<5) cost=2; + given a set of weighted clauses

else cost=3;

} + find solution that maximizes the sum of the
else {

o weights of the satisfied clauses
if (hi>1l) cost=4;

else cost=5; + Assemble PCs that lead to same observable into

} “clauses” of weight “1”

+ MaxSMT solution gives maximal assignment =

Ci::(I<0AhRy <0) largest number of observables

Cy :: (l <0OAhg >0A ho <5)

Cy:: (1 <0Ahg >5) * Any other assignments lead to fewer observables
Cy:(l>0ANhg >1)

Cs::(Il>0ANhs <1)

MaxSMT solution: Lo=-1 satisfies first 3 clauses

Leakage log, (3)=1.58 bits

Mult-run Analysis

The attacker learns the secret by observing multiple program runs

* Generalization to multiple-run side-channel analysis

P(h,1,); P(h,l3); ..P(h,1},) l

* An “observable” is a sequence of costs

* MaxSMT used to synthesize a sequence of public inputs that maximize leakage; non-
adaptive attacks; greedy approach [CSF'16]

* Maximize Shannon leakage: parameterized model counting+ numerical optimization;
adaptive attacks [CSF'17]

* Analysis of password examples and cryptographic functions

* Shown experimentally to perform better than previous approaches based on self
composition or brute-force enumeration

+ More work on side-channel analysis [[SSTA’18]

Results tor Password Check

Results for 4 elements with 4 values (8 bits of information)

Total Leakage vs. Number of Guesses

0 2 4 6 8 10 12 14
Number of Guesses

Timing Side Channel

Symbolic Execution and Fuzzing

* Fuzzing: random testing with some
fuzzing

“ Cheap

* Not good at finding “deep paths”
that depend on complicated
constraints

* Symbolic execution

* Expensive

* Good at finding “deep paths”

“ Better Together!

Symbolic Execution and Fuzzing

* Kelinci [CCS'17] — AFL-based fuzzing for Java

« Badger: Complexity Analysis with Fuzzing and Symbolic
Execution [ISSTA’18]

« DifFuzz: differential fuzzing for side-channel analysis
[IESE 19]

« HyDiff: hybrid differential software analysis [[CSE20]

* Fuzzing, Symbolic Execution, and Expert Guidance for
Better Testing. [IEEE Software 2024]

Kelinci means rabbit in Indonesian, the language spoken on the Java island

Badger

fuzzer

e export inputs import inputs 0
SymE)(e interesting input

concolic execution

: includes

— % .
| £

worst-case analysisJ !

new input

Input 9

Generation

I.

f trie-guided symbolic
” execution] |
v
bounded symbolic

execution

model generation | 1 =
l ’ path condition

input generation

Current and Future Work

“ Neural network analysis —

* NEUROSPEF: A tool for the Symbolic Analysis of Neural Networks (ICSE"21, FOMLAS’21)
“ Probabilistic Analysis of Neural Networks (SEAMS’20, ISSRE "20)
“ NNRepair: Constraint-based Repair of Neural Network Classifiers (CAV’21)

« Using LLMs to generalize Symbolic PathFinder’s results

« Side-channel analysis — new AWS small project

Thank you

Contact information: corina.s.pasareanu@nasa.gov

