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Software Safety and Security

❖ Software systems become more pervasive and complex
❖ Increased need for techniques and tools that ensure 

safety and security of software systems
❖ Research interests: 

❖ developing automated verification techniques and
❖ their application at all phases of software development
❖ both theoretical foundations and practical tools



Approaches to finding errors
❖ Testing

❖ Well accepted technique 

❖ May miss errors

❖ Model checking

❖ Automatic, exhaustive

❖ Scalability issues

❖ Static analysis

❖ Automatic, scalable

❖ Reported errors may be spurious



Symbolic Execution
❖ Systematic program analysis technique — King [Comm. ACM 1976], Clarke [IEEE 

TSE 1976]

❖ Executes programs on symbolic inputs — represent multiple concrete inputs 

❖ Path conditions — conditions on inputs following same program path
❖ Check satisfiability – explore only feasible paths

❖ Solve path conditions: obtain test inputs

❖ Bounded execution

❖ Many applications: test-case generation, error detection, …

❖ Many tools: SAGE, DART, KLEE, Pex, BitBlaze …

❖ Symbolic PathFinder



Example Concrete Execution



Example Symbolic Execution



Another Example

void test (int n) {

int x=0;

while (x<n)

x=x+1;

}



Loops



Symbolic PathFinder
❖ Symbolic execution tool for Java 

bytecode

❖ Lazy initialization for input data 
structures and arrays

❖ Handles multi-threading and string 
operations

❖ Supports quantitative reasoning

❖ Comes with library models 

❖ Enables symbolic execution to start at 
“any point”

❖ Uses machine learning to infer “unit 
preconditions” based on concrete runs

Java PathFinder tool-set

Symbolic PathFinder
❖ Symbolic execution tool for 

Java bytecode; open-
sourced

❖ Lazy initialization for input 
data structures and arrays

❖ Handles multi-threading 
and string operations

❖ Supports quantitative 
reasoning

❖ Comes with library models 

Java PathFinder tool-set

https://github.com/SymbolicPathFinder/jpf-symbc



Test Generation for NASA Applications
❖ NASA control software: onboard abort 

executive ( OAE) [ISSTA’08]

❖ manual testing: time consuming ~ 1 week

❖ guided random testing could not obtain full 
coverage

❖ SPF generated ~200 tests to obtain full 
coverage <1min

❖ Flight rules covered 27/27

❖ Aborts covered 7/7

❖ Size of input: 27 values/test case

❖ Found major bug in new version

OAE structure



Handling Data Structures
❖ Lazy initialization [TACAS’03,ISSTA’04] — nondeterminism 

handles aliasing



Lazy Initialization



Dynamic Symbolic Execution/Concolic Testing

❖ collect symbolic constraints during concrete executions

❖ DART = Directed Automated Random Testing

❖ Concolic = Concrete/symbolic testing

❖ P. Godefroid, K. Sen and many many others …

❖ very popular, simple to implement



Dynamic Symbolic Execution/Concolic Testing
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Dynamic Symbolic Execution/Concolic Testing



Dynamic Symbolic Execution/Concolic Testing



Complexity Analysis

❖ Problem

❖ Estimate the worst-case 
complexity of programs

❖ Applications

❖ Finding vulnerabilities related 
to denial-of-service attacks

❖ Guiding compiler optimizations 

❖ Finding and fixing performance 
bottlenecks in software

DARPA STAC



Symbolic Complexity Analysis
❖ Computes inputs that expose worst-case behavior 

❖ Computes bounds on worst-case complexity

❖ Simple approach

❖ Perform symbolic execution over the program — compute cost of each path

❖ Return the path with largest cost

❖ Has scalability issues

❖ Symbolic execution guided by path policies [ICST’17]

❖ Encode choices along worst-case path 

❖ Intuition: worst-case behavior for small input can predict worst-case behavior for 
larger input

https://github.com/isstac/spf-wca



Guided Symbolic Execution
❖ Policy Generation 

❖ Exhaustive symbolic 
execution at small input 
size(s)

❖ Compute path with largest 
cost

❖ Build policy based on 
decisions taken along that 
path

❖ Policy Guided Execution

❖ Symbolic execution for 
increasing  input sizes

❖ Explore only paths that 
conform with policy

❖ For each input size compute 
path (and input) with largest 
cost

❖ Function fitting

❖ Computes estimate of worst-case behavior as a function of 
input size

❖ Gives lower bounds on worst-case complexity for any size

Guessed bounds can be proved using a resource analysis



Path Policies
❖ Decide which branch to execute for the conditions in the program

❖ Similar to e.g. [Burnim et al. ICSE’09, Zhang et al. ASE’11]

❖ New 

❖ History aware: take into account the history of choices made along a path to decide which 
branch to execute next  

❖ Context preserving: the decision for each condition depends on the history computed with 
respect to the enclosing method 

❖ Symbolic execution, guided by policies, can reduce to exploring a single path regardless of input size 

❖ Scales far beyond non-guided symbolic execution and outperforms previous techniques

❖ Theoretical guarantee: when policies are “unified”, worst-case path policy is eventually found

❖ Unification over policies obtained for successive small inputs

❖ For each condition: take union over decisions specified by each policy



....

7 Entry findEntry(String o, ....) {

8    for(Entry e = l; e!=null; e=e.next) {

9       if (e.key.equals(o)) {

10         return e;

11      }

12   }

....   

16   return null;

17 }

18 class String {

19 char[] value;

20 // ...

21  public boolean equals(Object oObj) {

22    // ...

23    String o = (String) oObj;

24    if (val.length == o.val.length) {

25       for(int i=0; i<val.length; i++) {

26         if (val[i]!=o.val[i])

27            return false;

28       }

29       return true;

30    }

31    return false;

32  }

33 }

Example

Regression analysis

Hash collisions organized in a list



Case Study: TextCruncher Sort
❖ Text processing application with various filters, e.g. WordCount, NGramScore

❖ Found vulnerability in sorting algorithm

❖ Triggered by files with 3 x n different words: 6000 words: 5 min; 6001 words: few secs.

Vulnerability: exponential for lists of length n × 3

From DARPA STAC



Probabilistic Reasoning
❖ Extension of symbolic 

execution with probabilistic 
reasoning [ICSE’13,PLDI’14]

❖ Computes the probability of a 
target event, under an input 
distribution 

❖ Model counting over 
symbolic constraints

❖ Latte, Barvinok -- integer linear 
constraints, finite domain



Probabilistic Reasoning

❖ E.g. assuming uniform distribution, 
❖ Compute path conditions that lead to target event
❖ Count the number of input values that satisfy the corresponding path conditions
❖ Divide it by the size of the input domain (#D)

❖



Example

discountedPressure <=80 discountedPressure >80

spinSpeed<=70 spinSpeed>70

PC: spinSpeed>70 &
discountedPressure >80

80%

14% 6%

input domain 100 x 100 

Pr(Fail) = #(PC)/D
= #(spinSpeed>70 & discountedPressure >80)/D
= 30 x 20/10000 = 6%



Software Reliability
❖ Probability of successful termination under stochastic environment assumptions

❖ Perform bounded symbolic execution: results in three sets of paths
❖ Success (PCs): lead to successful termination

❖ Fail (PCs): lead to failure

❖ Grey (PCs): “don’t know”

❖ For given usage profile UP: Pr(Fail|UP) = Pr(PCs|UP), e.g. for uniform UP: 
❖ Pr(Fail)= #(PC)/D= #(spinSpeed>70 & discountedPressure >80)/D= 30 x 20/10000=6 %.

❖ Pr(Success) and Pr(Grey) are computed similarly

❖ Pr(Fail)+Pr(Success)+Pr(Grey)=1

❖ Reliability = Pr(Success)

❖ Confidence = 1 - Pr(Grey) (“1” means that analysis is complete)



Usage Profiles

❖ Arbitrary UPs – handled through discretization
❖ UPs can be seen as “pre-conditions”
❖ Continuous input distributions [FSE’15]



Computing with usage profilesComputing with usage profiles

❖ Usage profile: set of pairs <ci, pi>

❖ ci — usage scenario, constraint on inputs

❖ pi — probability that the input is in ci 



Model Counting
❖ Latte, Barvinok -- integer linear constraints, finite domain — 

Polynomial in number of variables and constraints
❖ Omega Lib used for algebraic simplifications
❖ Optimizations: independence, caching

❖ Research on 
❖ model counting for data structures [SPIN’15], 
❖ strings [FSE’16] — ABC Solver (UC Santa Barbara)
❖ non-linear constraints [NFM’17]



Model Counting for Data Structures

❖ SPF performs lazy initialization

❖ Computes Heap PC

❖ Explicit enumeration using Korat (MIT)

❖ Arbitrary complex predicates

❖ E.g. “acyclic lists of integers with size smaller than the 
largest contained value”



Multi-threading
❖ Enumerate all possible schedules (using model checking, partial order 

reduction)

❖ Compute best/worst “reliability”

❖ Report best/worst schedule

❖ Useful for debugging

❖ Tree-like schedules

❖ Monte-Carlo sampling of symbolic paths

❖ Reinforcement learning to iteratively compute schedules

❖ Usage profiles summarize hundreds of hours of operation/
simulation



Application: Onboard Abort Executive

❖ NASA control software

❖ Mission aborts

❖ 3754 paths, 36 input sensors

❖ 30 usage scenarios

❖ Execution time: 20.5 sec

❖ Checking for “no aborts”

❖ Rel > 0.9999999



Beyond Finite Domains

❖Probabilistic symbolic execution
❖Arbitrary constraints
❖Continuous input distributions
❖Unbounded domains
❖“Iterative Distribution-Aware Sampling for Probabilistic Symbolic 

Execution” — Mateus Borges, Antonio Filieri, Marcelo D’Amorim, Corina 
S. Păsăreanu, ESEC/FSE 2015

,



Side-Channel Analysis

❖ Side-channel attacks
❖ recover secret inputs to programs from 

non-functional characteristics of 
computations

❖  time or power consumption, number of 
memory accesses or size of output files

❖ An attack on “main” channel: exponential
❖ On “side channel”: linear

boolean verifyPassword(byte [] input, 

                       byte [] password) {

  for ( int i = 0; i < SIZE; i++) {

   if (password[ i ] != input[ i ])

     return false ;

   Thread.sleep(25L);

  }

  return true;

}

low
high



Side-Channel Analysis
❖ Non-interference — too strict
❖ Quantitative Information-Flow Analysis (QIF) to determine information leakage

❖ Perform symbolic execution (high and low symbolic)
❖ Collect all symbolic paths — each path leads to an observable

❖ Side channels produce a set of “observables” that partition the secret

❖ Cost model for observables: execution time, number of packets sent/received over network, etc.

Channel Capacity

Shannon Entropy

Quantifying Information Leakage



Computing Shannon Entropy

❖ Use symbolic execution and model counting 
[CSF’16,FSE’16,CSF’17]



Example

Channel capacity:
log2(2)=1 bit

Shannon Entropy:
-0.3 log2(0.3) -0.7 log2(0.7)=
0.3 * 1.736966 + 0.7 * 0.514573=
0.8812909 bits

high ≤ 7
o2=cost 2

p(o2)=0.7

high>7
o1=cost 1

p(o1)=0.3

//“high” range: 1..10

if( high > 7 ) 

   ... cost = 1;

else

   ... cost = 2;

Symbolic 
execution



Password Example
❖ 5 paths

❖ h[0]!=l[0] returns false: 128 values
❖ h[0]=l[0] & h[1]!=l[1] returns false: 

64 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]!=l[2] 

returns false: 32 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]=l[2] & 

h[3]!=l[3] returns false: 16 values
❖ h[0]=l[0] & h[1]=l[1] & h[2]=l[2] & 

h[3]=l[3] returns true: 16 values

Observable is time: H=1.875
Observable is output: H=0.33729

// 4-bit input and password; D=256 
boolean verifyPassword(byte [] input, 
                  byte [] password){ 
  for(int i = 0; i < SIZE; i++){ 
   if (password[i]!=input[i]) 
     return false ; 
   Thread.sleep(25L); 
  } 
  return true; 
}

// 4-bit input and password; D=256 
boolean verifyPassword(byte [] input, 
                  byte [] password){ 
  boolean matched=true; 
  for(int i = 0; i < SIZE; i++){ 
   if (password[i]!=input[i]) 
     matched=false ; 
   else 
     matched=matched; 
   Thread.sleep(25L); 
  } return matched; }

Corrected!



Maximizing Leakage

❖ using symbolic low value over-
approximates leakage

❖ example: 5 possible observables; lo<0: 
3 observables, lo≥0: 2 observables

void example(int lo, int hi) { 
 if(lo<0){ 
  if(hi<0) cost=1; 
  else if(hi<5) cost=2; 
  else cost=3; 
 } 
 else { 
  if(hi>1) cost=4; 
  else cost=5; 
 } 
}

❖ Goal: find low input that maximizes number of observables 
(channel capacity)

❖ Shows most powerful “attack” in one step

❖ Shows most vulnerable program behavior



Maximizing Leakage using MaxSMT
❖ MaxSMT solving — generalization of SMT to 

optimization

❖ given a set of weighted clauses

❖ find solution that maximizes the sum of the 
weights of the satisfied clauses

❖ Assemble PCs that lead to same observable into 
“clauses” of weight “1”

❖ MaxSMT solution gives maximal assignment ⇒ 
largest number of observables

❖ Any other assignments lead to fewer observables

MaxSMT solution: Lo=-1 satisfies first 3 clauses

Leakage log2 (3)=1.58 bits

void example(int lo, int hi) { 
 if(lo<0){ 
  if(hi<0) cost=1; 
  else if(hi<5) cost=2; 
  else cost=3; 
 } 
 else { 
  if(hi>1) cost=4; 
  else cost=5; 
 } 
}



Multi-run Analysis
❖ The attacker learns the secret by observing multiple program runs

❖ Generalization to multiple-run side-channel analysis

❖ An “observable” is a sequence of costs 

❖ MaxSMT used to synthesize a sequence of public inputs that maximize leakage; non-
adaptive attacks; greedy approach [CSF’16]

❖ Maximize Shannon leakage: parameterized model counting+ numerical optimization; 
adaptive attacks [CSF’17]

❖ Analysis of password examples and cryptographic functions

❖ Shown experimentally to perform better than previous approaches based on self 
composition or brute-force enumeration

❖ More work on side-channel analysis [ISSTA’18]



Results for Password Check
Results for 4 elements with 4 values (8 bits of information)

Timing Side Channel



Symbolic Execution and Fuzzing
❖ Fuzzing: random testing with some 

fuzzing

❖ Cheap

❖ Not good at finding “deep paths” 
that depend on complicated 
constraints

❖ Symbolic execution

❖ Expensive

❖ Good at finding “deep paths” 

❖ Better Together!



Symbolic Execution and Fuzzing
❖ Kelinci [CCS’17] — AFL-based fuzzing for Java 

❖ Badger: Complexity Analysis with Fuzzing and Symbolic 
Execution [ISSTA’18]

❖ DifFuzz: differential fuzzing for side-channel analysis 
[ICSE’19]

❖ HyDiff: hybrid differential software analysis [ICSE’20]

❖ Fuzzing, Symbolic Execution, and Expert Guidance for 
Better Testing. [IEEE Software 2024]

Kelinci means rabbit in Indonesian, the language spoken on the Java island



Badger

interesting input

import inputs

fuzzer

export inputs

SymExe
Trie Extension / 
Input Assessment

worst-case analysis

concolic execution
includes

Exploration
Input 
Generation

most promising node

trie-guided symbolic 
execution

bounded symbolic 
execution

model generation

input generation

new input

1

2

3
4

5

path condition



Current and Future Work

❖ Neural network analysis — 
❖ NEUROSPF: A tool for the Symbolic Analysis of Neural Networks (ICSE’21, FoMLAS’21)
❖ Probabilistic Analysis of Neural Networks (SEAMS’20, ISSRE ’20)
❖ NNRepair: Constraint-based Repair of Neural Network Classifiers (CAV’21)

❖ Using LLMs to generalize Symbolic PathFinder’s results

❖ Side-channel analysis — new AWS  small project



Thank you

Contact information: corina.s.pasareanu@nasa.gov


