
TracerX-Pruning Dynamic Symbolic Execution with Weakest
Precondition Interpolation

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3

1,3National University of Singapore, Singapore
{joxan,arpita}@comp.nus.edu.sg

2Huawei Canada Research Centre, Canada
rasool.maghareh@huawei.com

4th International KLEE Workshop on Symbolic Execution
15-16 April 2024, Lisbon, Portugal

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation



From KLEE To TracerX

DFS Forward Symbolic Execution to find feasible paths (Similar to KLEE)

Intermediate execution states preserved (Unlike KLEE)

Path interpolants are generated for each path during backward tracking

Tree interpolants are generated as conjunction of path interpolants

Tree interpolants then used for subsumption at similar program points

KLEE

TracerX Interpolant
Generation Engine

SMT Solver

C
la

ng

LLVM IR

Annotations

C
CPP
ObjC Test Cases

Statistics

Figure: TracerX Framework

1: LEARN

2: PRUNE

Figure: Pruning of subtree

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation



Symbolic Execution Tree with Interpolation

<1a>

<2a>

<3a> <4a>

<5a> <5b>

<6a>

<8a>

<9a>

<11a>

x=x+9

<10a>

<11a>

x=x+14

<7a>

<8b>

x=0

x=x+3 x=x+2

x=x+5 x=x+7

x = 0;

if (b1) x += 3 else x += 2

if (b2) x += 5 else x += 7

if (b3) x += 9 else x += 14

assert(x <= 24)

Without interpolation: The full
tree is traversed.

With interpolation:
1 〈8b〉 context contains x = 10. It

is subsumed with the tree
interpolant from 〈8a〉: x ≤ 10.

2 〈5b〉 context contains x = 2.
Subsumed with the tree
interpolant from 〈5a〉: x ≤ 3.

3 Big subtree traversal is avoided.

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation



Interpolation: Weakest Precondition

Ideal interpolant is the weakest precondition (WP) of the target. Unfortunately,
WP is intractable to compute.

For example, Assume (b1 ∧ ¬b2 ∧ ¬b3) is UNSAT.
WP before first “if-statement” is: b1 −→ (¬b2 ∧ b3 ∧ x ≤ 7) ∨ (b2 ∧ x ≤ 4)
¬b1 −→ x < 3
Essentially, WP is exponentially disjunctive
Challenge is to obtain a conjunctive approximation

A Path is a sequence of assignment and assume instructions:

1 Interpolant of Assignment instruction:

wp(inst, ω) = · · · inverse transition of inst over ω
e.g. ω : x ≤ 15 and inst : x = z + 2, then wp(inst, ω) : z ≤ 13

2 Interpolant of Assume instruction (C is incoming Context): {C} assume(B) {ω}
WP Approximation: find C̄ to replace C
ABDUCTION PROBLEM !!!

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation



Approximation of Weakest Precondition

This algorithm is the heart of TracerX:

1 We compute finest partition so that var(Ci ) ∗ var(Cj) s.t. i 6= j :
{C1 ∗ C2 ∗ C3 ∗ ... ∗ Cn} assume(B) {ω1 ∗ ω2 ∗ ω3 ∗ ... ∗ ωm} (∗ is as in
separation logic).

2 Bunch Ci into three:

Target independent: The Ci which are separate from B and ω.
Action: Replace Ci with true, i.e. remove Ci .
Guard independent: Consider Cgi ≡ Ci s.t. Ci ∗ B; and, ωgi ≡ ωj s.t.
B ∗ ωj .
Action: Replace Cgi by ωgi .
Remainder of the Ci : We do not capture exact WP for this group.
e.g. {z == 5} assume(x > z − 2) {x > 0} (Here, z > 2 is the WP)
Action: No change to Ci , i.e. keep Ci .

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation



Experimental Results

Data set: All C-programs from RERS-2012 Challenge [6].

Total targets: 1159

All three systems KLEE [1], CBMC [5] and TracerX-WP [4] are run for 3600
seconds

1 TracerX-WP able to detect 348 targets, while KLEE and CBMC are detected 245
and 117 targets respectively.

2 TracerX-WP is 29.59x faster than KLEE and 66.37x faster than CBMC

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation



Resources on TracerX

1 Website: https://tracer-x.github.io/

2 Github: https://github.com/tracer-x/

3 TracerX: Dynamic Symbolic Execution with Interpolation
J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, 2020
https://arxiv.org/abs/2012.00556

4 TracerX: Dynamic Symbolic Execution with Interpolation (competition
contribution) J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha,

5 Toward Optimal MC/DC Test Case Generation
S. Godboley, J. Jaffar, R. Maghareh, A. Dutta, ISSTA 2021

6 TracerX: Pruning Dynamic Symbolic Execution with Deletion and Weakest
Precondition Interpolation (competition contribution)
A. Dutta, R. Maghareh, J. Jaffar, S. Godboley, X. L. Yu, FASE 2024

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation

https://tracer-x.github.io/
https://github.com/tracer-x/
https://arxiv.org/abs/2012.00556


References

[1] C. Cadar et al. Klee: Unassisted and automatic generation of high-coverage tests
for complex systems programs. In: OSDI, 2008.

[2] J. Jaffar et al. TRACER: A symbolic execution tool for verification. In: CAV, 2012.

[3] J. Jaffar et al. TracerX: Dynamic symbolic execution with interpolation
(competition contribution) . In: FASE, 2020.

[4] A. Dutta et al. TracerX: Pruning Dynamic Symbolic Execution with Deletion and
Weakest Precondition Interpolation (competition contribution). In: FASE, 2024.

[5] D. Kroening D et al. CBMC-C Bounded Model Checker. In: TACAS 2014.

[6] http://rers-challenge.org/

Arpita Dutta1, Rasool Maghareh2, and Joxan Jaffar3 TracerX-Pruning Dynamic Symbolic Execution with Weakest Precondition Interpolation


