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From KLEE To TracerX

DFS Forward Symbolic Execution to find feasible paths (Similar to KLEE)

Intermediate execution states preserved (Unlike KLEE)

Path interpolants are generated for each path during backward tracking

Tree interpolants are generated as conjunction of path interpolants

Tree interpolants then used for subsumption at similar program points
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Symbolic Execution Tree with Interpolation

<1a>

<2a>

<3a> <4a>

<5a> <5b>

<6a>

<8a>

<9a>

<11a>

x=x+9

<10a>

<11a>

x=x+14

<7a>

<8b>

x=0

x=x+3 x=x+2

x=x+5 x=x+7

x = 0;

if (b1) x += 3 else x += 2

if (b2) x += 5 else x += 7

if (b3) x += 9 else x += 14

assert(x <= 24)

Without interpolation: The full
tree is traversed.

With interpolation:
1 〈8b〉 context contains x = 10. It

is subsumed with the tree
interpolant from 〈8a〉: x ≤ 10.

2 〈5b〉 context contains x = 2.
Subsumed with the tree
interpolant from 〈5a〉: x ≤ 3.

3 Big subtree traversal is avoided.
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Interpolation: Weakest Precondition

Ideal interpolant is the weakest precondition (WP) of the target. Unfortunately,
WP is intractable to compute.

For example, Assume (b1 ∧ ¬b2 ∧ ¬b3) is UNSAT.
WP before first “if-statement” is: b1 −→ (¬b2 ∧ b3 ∧ x ≤ 7) ∨ (b2 ∧ x ≤ 4)
¬b1 −→ x < 3
Essentially, WP is exponentially disjunctive
Challenge is to obtain a conjunctive approximation

A Path is a sequence of assignment and assume instructions:

1 Interpolant of Assignment instruction:

wp(inst, ω) = · · · inverse transition of inst over ω
e.g. ω : x ≤ 15 and inst : x = z + 2, then wp(inst, ω) : z ≤ 13

2 Interpolant of Assume instruction (C is incoming Context): {C} assume(B) {ω}
WP Approximation: find C̄ to replace C
ABDUCTION PROBLEM !!!
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Approximation of Weakest Precondition

This algorithm is the heart of TracerX:

1 We compute finest partition so that var(Ci ) ∗ var(Cj) s.t. i 6= j :
{C1 ∗ C2 ∗ C3 ∗ ... ∗ Cn} assume(B) {ω1 ∗ ω2 ∗ ω3 ∗ ... ∗ ωm} (∗ is as in
separation logic).

2 Bunch Ci into three:

Target independent: The Ci which are separate from B and ω.
Action: Replace Ci with true, i.e. remove Ci .
Guard independent: Consider Cgi ≡ Ci s.t. Ci ∗ B; and, ωgi ≡ ωj s.t.
B ∗ ωj .
Action: Replace Cgi by ωgi .
Remainder of the Ci : We do not capture exact WP for this group.
e.g. {z == 5} assume(x > z − 2) {x > 0} (Here, z > 2 is the WP)
Action: No change to Ci , i.e. keep Ci .
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Experimental Results

Data set: All C-programs from RERS-2012 Challenge [6].

Total targets: 1159

All three systems KLEE [1], CBMC [5] and TracerX-WP [4] are run for 3600
seconds

1 TracerX-WP able to detect 348 targets, while KLEE and CBMC are detected 245
and 117 targets respectively.

2 TracerX-WP is 29.59x faster than KLEE and 66.37x faster than CBMC
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Resources on TracerX

1 Website: https://tracer-x.github.io/

2 Github: https://github.com/tracer-x/

3 TracerX: Dynamic Symbolic Execution with Interpolation
J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha, 2020
https://arxiv.org/abs/2012.00556

4 TracerX: Dynamic Symbolic Execution with Interpolation (competition
contribution) J. Jaffar, R. Maghareh, S. Godboley, X.L. Ha,

5 Toward Optimal MC/DC Test Case Generation
S. Godboley, J. Jaffar, R. Maghareh, A. Dutta, ISSTA 2021

6 TracerX: Pruning Dynamic Symbolic Execution with Deletion and Weakest
Precondition Interpolation (competition contribution)
A. Dutta, R. Maghareh, J. Jaffar, S. Godboley, X. L. Yu, FASE 2024
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