
Towards Complete Fuzzing with KLEE

Kanika Gupta, Sangharatna Godboley

NITMINER Technologies,
Department of Computer Science and Engineering,

National Institute of Technology, Warangal, Warangal, Telangana, India,
kanikagupta.gupta18@gmail.com, sanghu@nitw.ac.in

KLEE Workshop 2024

Co-Organised with
46th International Conference on Software Engineering (ICSE 2024) ,

15-16 April, 2024,
Lisbon, Portugal

April 10, 2024



Plan of the talk

1 Objective

2 Introduction

3 Proposed Idea

4 Implementation Details

5 Experimental Study

6 Result Analysis

7 Conclusion

8 References

2/19 Towards Complete Fuzzing with KLEE



Objective

Comp-AFL = Framma-C + AFL + KLEE

3/19 Towards Complete Fuzzing with KLEE



Introduction

The software can only be considered safe for release and use
once all bugs and vulnerabilities have been identified and elim-
inated.

Fuzzing is a technique within the software testing domain that
can be employed to detect vulnerabilities.

However, fuzzing does have certain drawbacks, such as speed,
coverage, and efficiency issues.

Traditional fuzzers often struggle to efficiently identify software
vulnerabilities within a given timeframe.

In this paper, we present a comprehensive fuzzing technique
designed to enhance the effectiveness of fuzzers, particularly in
terms of identifying the status of targets within the software.
This technique, referred to as Complete AFL (Comp-AFL), aims
to detect more vulnerabilities, thus advancing the concept of
complete fuzzing.

4/19 Towards Complete Fuzzing with KLEE



Introduction

Comp-AFL introduces a method by which the fuzzer can iden-
tify a greater number of vulnerabilities, bringing it closer to
achieving the goal of complete fuzzing.

This approach streamlines the process by leveraging the static
analysis tool Frama-C to eliminate the extra time that fuzzers
typically spend exploring unreachable vulnerabilities.

Furthermore, we enhance the efficiency using the dynamic sym-
bolic tool KLEE, which identifies additional known targets to
optimize the fuzzing process.

Our experimental results demonstrate that the proposed Comp-
AFL approach consistently outperforms both baseline AFL and
AV-AFL across all 40 programs, achieving superior results in
100% of cases.

Notably, Comp-AFL achieves a state of complete fuzzing by
identifying all targets as known targets in 25% of the 40 pro-
grams.

5/19 Towards Complete Fuzzing with KLEE



Proposed Idea

The framework of Comp-AFL, as depicted in Figure 1, inte-
grates static analysis of the source code with a fuzzing strategy
followed by dynamic symbolic execution to efficiently detect
vulnerabilities.

The process unfolds as follows:
1 The original C-Program is supplied to Frama-C, a sound static

analyzer, which utilizes the EVA plug-in to extract alarm details
from the program. Alarmed vulnerabilities’ locations become
the targets for fuzzing.

2 Non-alarmed targets in the C-Program are proven as Unreach-
able targets.

3 These unreachable targets are combined with the number of
Known targets.

6/19 Towards Complete Fuzzing with KLEE



Proposed Idea

Figure 1: Framework for Comp-AFL

7/19 Towards Complete Fuzzing with KLEE



Implementation Details

The Code Refiner-I component takes the C-Program and the
list of Alarms to produce a Refined C-Program.

This refined version focuses solely on the meaningful targets of
interest for fuzzing.
The Refined C-Program is then fed into AFL along with random
Seeds.
AFL generates Fuzz Statistics (fuzzer stats, fuzz bitmap,
plot data) and Test Inputs (crashes, hangs, queue).

8/19 Towards Complete Fuzzing with KLEE



Implementation Details

Crash Triage, an AFL utility, produces a detailed log with Crash
Details (CLog).

The Unique Target Extractor component identifies unique
crashes within the Refined C-Program using the information
from AFL.
These targets are marked as Reachable targets.
Additionally, the Unique Target Extractor considers the list of
alarms already proven as Unreachable targets by Frama-C.
Both Reachable and Unreachable targets are combined and
termed as Known targets (#K).
The number of Unknown targets (#UK) can be calculated by
subtracting the number of Known targets from the total number
of targets in the original program.

9/19 Towards Complete Fuzzing with KLEE



Implementation Details

To further reduce the number of unknown targets, dynamic
symbolic execution is introduced.

As the crash details obtained from AFL already include identified
crashes and their line numbers, the proposed method removes
these crashes from the process and adds them to #K.
Code Refiner-II utilizes the crash information to eliminate these
crashes from the refined code, producing refined-code-II.
Refined-code-II is supplied to KLEE, a dynamic symbolic execu-
tion tool.

10/19 Towards Complete Fuzzing with KLEE



Implementation Details

KLEE processes the refined C program and detects crashes
within a certain execution time, resulting in #K targets and
an Elapsed Time.

If KLEE execution completes within the TIMEOUT, all targets
are considered Known (since KLEE is a sound tool), achieving
complete fuzzing with zero Unknown targets.
However, if KLEE execution exceeds TIMEOUT, it implies the
presence of Unknown targets that require further investigation
to achieve complete fuzzing.
The TIMEOUT can be adjusted based on the time budget.
Absolute complete fuzzing can be achieved by running the pro-
gram with an infinite time budget.

11/19 Towards Complete Fuzzing with KLEE



Experimental Study

We conducted our experiments on a Linux system running a
64-bit Ubuntu 16.04 distribution, equipped with an Intel Core
i5-1135G7 CPU operating at 2.40GHz and 4.8 GB of RAM.

Our benchmark for the experimentation consisted of 40 RERS
programs, chosen to encompass a broad range of difficulty and
complexity levels.

These programs offer a representative spectrum of real-world
applications, including domains such as Avionics, Banking,
Medical, and Railways, among others [2,3,4,5].

Detailed experimental data and accompanying code scripts can
be found in the provided artefacts [1].

12/19 Towards Complete Fuzzing with KLEE



Experimental Study

Table 1: Experimental results on 40 RERS programs

AFL AV-AFL Comp-AFL
#U #R #K #UK #U #R #K #UK afl-#U afl-#R klee klee-#D TE #K #UKPrograms LOCs #Tr

m22 Reach 5002 100 0 14 14 86 0 12 12 88 0 9 91 17 0:30:17 26 74
m24 Reach 23125 100 0 4 4 96 0 6 6 94 0 4 96 6 0:30:23 10 90
m27 Reach 18645 100 0 2 2 98 6 5 11 89 6 4 90 6 0:30:17 16 84
m41 Reach 3144 100 0 65 65 35 3 43 46 54 3 66 31 9 0:30:26 78 22
m45 Reach 14344 100 0 15 15 85 0 8 8 92 0 11 89 10 0:30:42 21 79
m49 Reach 18680 100 0 17 17 83 0 18 18 82 0 18 82 3 0:30:19 21 79
m54 Reach 2554 100 0 79 79 21 0 88 88 12 0 82 18 7 0:03.01 100 0
m55 Reach 19721 100 0 0 0 100 3 1 4 96 3 1 96 0 0:30:16 4 96
m 76Reach 18620 100 0 14 14 86 3 14 17 83 3 14 83 0 30.13 17 83
m 95Reach 3500 100 0 9 9 91 8 8 16 84 8 8 84 17 30.41 33 67
m106 Reach 4197 100 0 1 1 99 0 1 1 99 0 2 98 2 30.12 4 96
m135 Reach 2989 100 0 2 2 98 4 2 6 94 4 3 93 5 0:25.66 100 0
m158 Reach 2048 100 0 9 9 91 5 12 17 83 5 7 88 22 0:30:13 34 66
m159 Reach 2328 100 0 9 9 91 0 9 9 91 0 14 86 15 0:30:12 29 71
m164 Reach 2482 100 0 31 31 69 6 24 30 70 6 31 63 30 0:30:12 67 33
m167 Reach 7719 100 0 1 1 99 10 1 11 89 10 1 89 1 0:30:18 12 88
m172 Reach 6083 100 0 3 3 97 3 6 9 91 3 3 94 4 0:30:12 10 90
m173 Reach 55859 100 0 3 3 97 1 3 4 96 1 3 96 0 0:30:10 4 96
m182 Reach 142430 100 0 3 3 97 1 4 5 95 1 3 96 1 0:30:10 5 95
m183 Reach 1656 100 0 65 65 35 1 64 65 35 1 62 32 5 0:05:09 100 0
m185 Reach 13215 100 0 0 0 100 3 0 3 97 3 0 97 0 0.30:17 3 97
m189 Reach 42707 100 0 0 0 100 1 0 1 99 1 0 99 3 0:30:12 4 96
m190 Reach 192855 100 0 12 12 88 0 11 11 89 0 11 89 3 30.09 14 86
m196 Reach 10444 100 0 14 14 86 1 16 17 83 1 16 83 0 0:30:05 17 83
m199 Reach 2358 100 0 28 28 72 1 27 28 72 1 26 73 7 0:30:20 34 66

problem11-R19 1143 100 0 15 15 85 56 16 72 28 56 16 28 0 0:01:51 100 0
problem12-R19 2061 100 0 0 0 100 45 0 45 55 45 0 55 0 0:02:43 100 0
problem13-R19 1877 100 0 14 14 86 49 14 63 37 49 14 37 0 0:03:06 100 0
problem14-R19 4691 100 0 24 24 76 53 24 77 23 53 24 23 0 0:30:02 77 23
problem15-R19 13213 100 0 0 0 100 15 0 15 85 15 0 85 0 0:30:17 15 85
problem17-R19 17342 100 0 39 39 61 34 38 72 28 34 36 30 3 0:30:21 73 27
problem18-R19 61608 100 0 0 0 100 11 0 11 89 11 0 89 0 0:30:15 11 89
problem-11-R20 1168 100 0 17 17 83 68 17 85 15 68 17 15 0 0:01:43 100 0
problem-12-R20 2298 100 0 0 0 100 49 0 49 51 49 0 51 0 0:03:32 100 0
problem-13-R20 2190 100 0 19 19 81 27 19 46 54 27 19 54 0 0:03:05 100 0
problem-14-R20 4183 100 0 4 4 96 46 4 50 50 46 4 50 0 0:28:08 100 0
problem-15-R20 26205 100 0 0 0 100 16 0 16 84 16 0 84 0 0:30:19 16 84
problem-16-R20 113733 100 0 1 1 99 2 1 3 97 2 1 97 0 0:30:18 3 97
problem-17-R20 18040 100 0 30 30 70 38 30 68 32 38 30 32 0 0:30:28 68 32
problem-18-R20 127848 100 0 0 0 100 19 0 19 81 19 0 81 0 0:30:13 19 81

13/19 Towards Complete Fuzzing with KLEE



Result Analysis

The columns #U represents the number of Unreachable tar-
gets; #R, indicating the number of reachable targets; #K,
denoting the total count of known targets; and #UK, which
signifies the total number of unknown targets.

afl-#U, which represents the count of unreachable targets de-
tected by AFL; afl-#R, indicating the number of reachable tar-
gets detected by AFL; klee, which represents the targets pro-
vided as input to Klee; Klee-#D, representing the count of tar-
gets detected by Klee; TE, indicating the elapsed time of Klee’s
execution; #K, representing the known targets; and #UK, de-
noting the unknown targets.

14/19 Towards Complete Fuzzing with KLEE



Result Analysis

Column#U under AFL contains 0 targets, as traditional fuzzers
are unable to detect unreachability due to their inability to com-
plete execution.

The #R column shows the number of targets detected by AFL
as unique crashes, and the #K column represents the total
count of targets whose status is now known, computed as the
sum of #U and #R.

Similarly, the #U column under AV-AFL represents the num-
ber of unreachable targets, calculated using Frama-C, a sound
static analysis tool.

The value of #UR is derived from (#Tr - #Alarmed Tar-
gets). Notably, in 32 out of 40 programs, Frama-C has proven
the presence of more than zero unreachable targets.

15/19 Towards Complete Fuzzing with KLEE



Result Analysis

The column afl-#U within Comp-AFL is derived from the
Sound Static Analyser.

The column afl-#R for targets under Comp-AFL represents the
actual unique crashes identified after removing#U targets from
the programs during AV-AFL execution.

The column Klee denotes the search space for Klee’s execution,
which is calculated using the formula #Tr - afl-#U + afl-#R
for targets.

The column #K represents targets under Comp-AFL and is
computed as afl-#U + afl-#R + Klee-#D. The #UK col-
umn, indicating unknown targets within Comp-AFL, can be
calculated as #Targets - #K targets within Comp-AFL.

16/19 Towards Complete Fuzzing with KLEE



Conclusion

Comp-AFL, consistently exhibits a higher number of #K Tar-
gets across all tested programs compared to the baseline AFL
and AV-AFL.

Notably, among the 40 tested programs, AV-AFL outperforms
AFL in terms of #K Targets in a total of 32 cases (highlighted
in green in Table 1).

17/19 Towards Complete Fuzzing with KLEE



Acknowledgement

This work is sponsored by IBITF, Indian Institute of Technology (IIT)
Bhilai, under the grant of PRAYAS scheme, DST, Government of
India.

18/19 Towards Complete Fuzzing with KLEE



References

1 2022. Experimental Artifacts: https://figshare.com/s/

7053da855851c6c6fd81.

2 RERS 2012. RERS:. http://rers-challenge.org/

3 RERS 2019. RERS19:Industrial Reachability Problems.
http://rers-challenge.org/2019/index.php?page=

industrialProblemsReachability

4 RERS 2019. RERS19:Sequential Reachability Problems.
http://rers-challenge.org/2019/index.php?page=

reachProblems

5 RERS 2020. RERS20:Sequential Reachability Problems.
http://rers-challenge.org/2020/index.php?page=

reachProblems

19/19 Towards Complete Fuzzing with KLEE

https://figshare.com/s/7053da855851c6c6fd81.
https://figshare.com/s/7053da855851c6c6fd81.
http://rers-challenge.org/
http://rers-challenge.org/2019/index.php?page=industrialProblemsReachability
http://rers-challenge.org/2019/index.php?page=industrialProblemsReachability
http://rers-challenge.org/2019/index.php?page=reachProblems
http://rers-challenge.org/2019/index.php?page=reachProblems
http://rers-challenge.org/2020/index.php?page=reachProblems
http://rers-challenge.org/2020/index.php?page=reachProblems


Th
ank

Yo
u!

19/19 Towards Complete Fuzzing with KLEE


	Objective
	Introduction
	Proposed Idea
	Implementation Details
	Experimental Study
	Result Analysis
	Conclusion
	References

