Towards Complete Fuzzing with KLEE

Kanika Gupta, Sangharatna Godboley

NITMINER Technologies,
Department of Computer Science and Engineering,
National Institute of Technology, Warangal, Warangal, Telangana, India,
kanikagupta.guptal8@gmail.com, sanghu®@nitw.ac.in

KLEE Workshop 2024
rerTUcAL

(\TUT
Smfo

T

e
WARANGAL

KLEE Workshop 2024

Co-Organised with

46th International Conference on Software Engineering (ICSE 2024) ,
15-16 April, 2024,
Lisbon, Portugal

April 10 2024

Plan of the talk

0 Objective

Introduction

Proposed Idea
Implementation Details
Experimental Study
Result Analysis

Conclusion

©0 0000600

References

Comp-AFL = Framma-C + AFL + KLEE

Introduction

@ The software can only be considered safe for release and use
once all bugs and vulnerabilities have been identified and elim-
inated.

@ Fuzzing is a technique within the software testing domain that
can be employed to detect vulnerabilities.

@ However, fuzzing does have certain drawbacks, such as speed,
coverage, and efficiency issues.

o Traditional fuzzers often struggle to efficiently identify software
vulnerabilities within a given timeframe.

@ In this paper, we present a comprehensive fuzzing technique
designed to enhance the effectiveness of fuzzers, particularly in
terms of identifying the status of targets within the software.
This technique, referred to as Complete AFL (Comp-AFL), aims
to detect more vulnerabilities, thus advancing the concept of
complete fuzzing. JM

Introduction

@ Comp-AFL introduces a method by which the fuzzer can iden-
tify a greater number of vulnerabilities, bringing it closer to
achieving the goal of complete fuzzing.

@ This approach streamlines the process by leveraging the static
analysis tool Frama-C to eliminate the extra time that fuzzers
typically spend exploring unreachable vulnerabilities.

@ Furthermore, we enhance the efficiency using the dynamic sym-
bolic tool KLEE, which identifies additional known targets to
optimize the fuzzing process.

@ Our experimental results demonstrate that the proposed Comp-
AFL approach consistently outperforms both baseline AFL and
AV-AFL across all 40 programs, achieving superior results in
100% of cases.

@ Notably, Comp-AFL achieves a state of complete fuzzing by
identifying all targets as known targets in 25% of the 40 pro- M
grams.

Proposed Ildea

@ The framework of Comp-AFL, as depicted in Figure 1, inte-
grates static analysis of the source code with a fuzzing strategy
followed by dynamic symbolic execution to efficiently detect
vulnerabilities.

@ The process unfolds as follows:

© The original C-Program is supplied to Frama-C, a sound static
analyzer, which utilizes the EVA plug-in to extract alarm details
from the program. Alarmed vulnerabilities’ locations become
the targets for fuzzing.

@ Non-alarmed targets in the C-Program are proven as Unreach-
able targets.

© These unreachable targets are combined with the number of
Known targets.

Proposed Idea

I + r
LY romne (@)t |
rama- >
L c) Refiner - I [c]
C-Program Alarms Refined C-Program ¢’ Seeds
¥
Crash Triage Fuzz Statistics
= 3
Target AFL
Extracter
Crash Detal
e Test Inputs
2 B]
Known {ryKnown
Targets Targers
Code Refiner
-1I

-
i KLEE I

Refined C-Program C"'

Known
Targets

Figure 1: Framework for Comp-AFL

Implementation Details

@ The Code Refiner-I component takes the C-Program and the
list of Alarms to produce a Refined C-Program.

o This refined version focuses solely on the meaningful targets of
interest for fuzzing.

o The Refined C-Program is then fed into AFL along with random
Seeds.

o AFL generates Fuzz Statistics (fuzzer_stats, fuzz bitmap,
plot_data) and Test Inputs (crashes, hangs, queue).

Implementation Details

@ Crash Triage, an AFL utility, produces a detailed log with Crash
Details (CLog).

o The Unique Target Extractor component identifies unique
crashes within the Refined C-Program using the information
from AFL.

o These targets are marked as Reachable targets.

e Additionally, the Unique Target Extractor considers the list of
alarms already proven as Unreachable targets by Frama-C.

o Both Reachable and Unreachable targets are combined and
termed as Known targets (#K).

o The number of Unknown targets (#UK) can be calculated by
subtracting the number of Known targets from the total number
of targets in the original program.

Implementation Details

@ To further reduce the number of unknown targets, dynamic
symbolic execution is introduced.

o As the crash details obtained from AFL already include identified
crashes and their line numbers, the proposed method removes
these crashes from the process and adds them to #K.

o Code Refiner-lI utilizes the crash information to eliminate these
crashes from the refined code, producing refined-code-Il.

o Refined-code-Il is supplied to KLEE, a dynamic symbolic execu-
tion tool.

Implementation Details

@ KLEE processes the refined C program and detects crashes
within a certain execution time, resulting in #K targets and
an Elapsed Time.

o If KLEE execution completes within the TIMEOUT, all targets
are considered Known (since KLEE is a sound tool), achieving
complete fuzzing with zero Unknown targets.

o However, if KLEE execution exceeds TIMEOUT, it implies the
presence of Unknown targets that require further investigation
to achieve complete fuzzing.

o The TIMEOUT can be adjusted based on the time budget.

o Absolute complete fuzzing can be achieved by running the pro-
gram with an infinite time budget.

Experimental Study

@ We conducted our experiments on a Linux system running a
64-bit Ubuntu 16.04 distribution, equipped with an Intel Core
i5-1135G7 CPU operating at 2.40GHz and 4.8 GB of RAM.

@ Our benchmark for the experimentation consisted of 40 RERS
programs, chosen to encompass a broad range of difficulty and
complexity levels.

@ These programs offer a representative spectrum of real-world
applications, including domains such as Avionics, Banking,
Medical, and Railways, among others [2,3,4,5].

@ Detailed experimental data and accompanying code scripts can
be found in the provided artefacts [1].

Experimental Study

Table 1: Experimental results on 40 RERS programs

AFL AV-AFL Comp-AFL
Programs | LOCs #Tr|#U|#R #K #UK|#U|#R #K #UK|afl-#U afl-#R klee[klee-#D[TE #K|#UK

[m22Reach | 5002 [100| 0 [14 14 86 | 0 |12[12] 88 o] o1
m24Reach [23125 [100| 0 |4 4 9% |0 |6 9 4| %
m27Reach 18645 [100| 0 |2 2 98 |6 |5 £ 7 90
m41Reach [3144 [100] 0 |65 65 35 | 3 |43 [46 | 54 66| a1
md5_Reach [14344 [100] 0 |15 15 85 | 0 [8 [8 | 92 11| 89
md49_Reach [18680 [100| 0 |17 17 83 | 0 |18 82 18] 82
mS4_Reach [2554 [100| 0 |79 79 21 | 0 |88 12 82[18]
mS5_Reach [T0721[100] 0 | 0 0 100 | 3 | 1[4 [0
m_76Reach [18620 [100] 0 |14 14 86 | 3 |14 5
m95Reach [3500 [100] 0 |9 9 o1 [8|8
mi06Reach | 4107 [100] 0 [1 T 99 [0 [T 1
mi3bReach | 2080 [100] 0 | 2 2 98 | 4 | 2
mi58Reach | 2043 [100] 0 [0 0 01 [5 [12
mI50Reach | 2328 [100] 0 [9 0 01 [0 [0]9
mi6d Reach | 2482 [100| 0 |31 31 69 | 6 |24 30
mi67Reach | 7710 [100] 0 | 1 1 99 |10 1
mi72Reach | 6083 [100] 0 | 3 3 97 |3 |6
mi73Reach [55850 [100] 0 | 3 3 97 | 1|3
mi62 Reach [142430[100] 0 |3 3 97 | 1|4 [5 |
mi83 Reach | 1656 [100] 0 |65 65 35 | 1 |64
mi85 Reach [13215 [100] 0 | 0 0 100 | 3 | 0
mi89 Reach [42707 [100] 0 | 0 0 100 | 1|0
m190 Reach [192855[100| 0 |12 12 88 | 0 |11
m196Reach [10444 [100]| 0 |14 14 86 | 1 |16
m109 Reach | 2358 [100] 0 |28 28 72 | 1 |27
problemI1-RI0 | 1143 [100] 0 |15 15 85 |56 | 16
problem12 RI0 | 2061 [100] 0 [00 100 [45| 0
problem13-RI0 | 1677 |100] 0 |14 14 86 |49 |14
problem14-RI0 | 4601 | 100| 0 |24 28 76 | 53 | 24
problem 5-RI0 [13213 [100] 0 [0 0 100 [15| 0
problem 7RI0 | 17342 [100] 0 39 39 61 | 34|38
problem 8-R10 | 61608 [100] 0 [0 0 100 [11| 0
problem 11.R20| 1168 [100| 0 |17 17 83 |68 |17
problem12.R20] 2298 [100] 0 | 0 0 100 [49 | 0
problem-13-R20] 2100 [100] 0 |19 19 81 |27 |19
problem 14-R20| 4163 [100] 0 | 4 4 96 |46 | 4
problem-15-R20] 26205 [100] 0 | 0 0 100 [16| 0
problem 16-R20[113733] 100 0 [1 1 99 | 2 |1
problem-17-R20| 18040 | 100 | 0 |30 30 70 | 38 | 30
problem 18-R20[127648] 100 | 0 | 00 100 [19] 0

Result Analysis

@ The columns #U represents the number of Unreachable tar-
gets; #R, indicating the number of reachable targets; #K,
denoting the total count of known targets; and #UK, which
signifies the total number of unknown targets.

e afl-#U, which represents the count of unreachable targets de-
tected by AFL; afl-#R, indicating the number of reachable tar-
gets detected by AFL; klee, which represents the targets pro-
vided as input to Klee; Klee-#D, representing the count of tar-
gets detected by Klee; TE, indicating the elapsed time of Klee's
execution; #K, representing the known targets; and #UK, de-
noting the unknown targets.

Result Analysis

@ Column #U under AFL contains 0 targets, as traditional fuzzers
are unable to detect unreachability due to their inability to com-
plete execution.

@ The #R column shows the number of targets detected by AFL
as unique crashes, and the #K column represents the total
count of targets whose status is now known, computed as the
sum of #U and #R.

o Similarly, the #U column under AV-AFL represents the num-
ber of unreachable targets, calculated using Frama-C, a sound
static analysis tool.

@ The value of #UR is derived from (#Tr - #Alarmed Tar-
gets). Notably, in 32 out of 40 programs, Frama-C has proven
the presence of more than zero unreachable targets.

Result Analysis

@ The column afl-#U within Comp-AFL is derived from the
Sound Static Analyser.

@ The column afl-#R for targets under Comp-AFL represents the
actual unique crashes identified after removing #U targets from
the programs during AV-AFL execution.

@ The column Klee denotes the search space for Klee's execution,
which is calculated using the formula #Tr - afl-#U + afl-#R
for targets.

@ The column #K represents targets under Comp-AFL and is
computed as afl-#4£U + afl-#R + Klee-#D. The #UK col-
umn, indicating unknown targets within Comp-AFL, can be
calculated as #Targets - #K targets within Comp-AFL.

Conclusion

@ Comp-AFL, consistently exhibits a higher number of #K Tar-
gets across all tested programs compared to the baseline AFL
and AV-AFL.

@ Notably, among the 40 tested programs, AV-AFL outperforms
AFL in terms of #K Targets in a total of 32 cases (highlighted
in green in Table 1).

A

Acknowledgement

Bhilai, under the grant of PRAYAS scheme, DST, Government of

This work is sponsored by IBITF, Indian Institute of Technology (11T)
India. J

e
&z (01

References

O 2022. Experimental Artifacts: https://figshare.com/s/
7053da855851c6c6£d81.

@ RERS 2012. RERS:. http://rers-challenge.org/

© RERS 2019. RERS19:Industrial Reachability Problems.
http://rers-challenge.org/2019/index.php?page=
industrialProblemsReachability

Q@ RERS 2019. RERS19:Sequential Reachability Problems.
http://rers-challenge.org/2019/index.php?page=
reachProblems

© RERS 2020. RERS20:Sequential Reachability Problems.
http://rers-challenge.org/2020/index.php?page=
reachProblems

.

https://figshare.com/s/7053da855851c6c6fd81.
https://figshare.com/s/7053da855851c6c6fd81.
http://rers-challenge.org/
http://rers-challenge.org/2019/index.php?page=industrialProblemsReachability
http://rers-challenge.org/2019/index.php?page=industrialProblemsReachability
http://rers-challenge.org/2019/index.php?page=reachProblems
http://rers-challenge.org/2019/index.php?page=reachProblems
http://rers-challenge.org/2020/index.php?page=reachProblems
http://rers-challenge.org/2020/index.php?page=reachProblems

	Objective
	Introduction
	Proposed Idea
	Implementation Details
	Experimental Study
	Result Analysis
	Conclusion
	References

