
SC-MCC Test Case Generation using Dynamic
Symbolic Execution Engines

1Golla Monika Rani, 2Sangharatna Godboley, 3Joxan Jaffar,
4Rasool Maghareh

1,2NITMINER Technologies, National Institute of Technology Warangal, India
3National University of Singapore, 4Huawei Canada Research Centre, Canada
gm720080@student.nitw.ac.in, sanghu@nitw.ac.in, joxan@comp.nus.edu.sg,

rasool.maghareh@huawei.com

KLEE Workshop 2024

Co-Organised with
46th International Conference on Software Engineering (ICSE 2024) ,

15-16 April, 2024,
Lisbon, Portugal

April 10, 2024



Plan of the talk

1 Introduction

2 Proposed Idea

3 Implementation Details

4 Experimental Study

5 Result Analysis

6 Conclusion

7 References

2/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Introduction

Exploring all the feasible paths in order to generate test cases
is costly when dynamic symbolic execution is considered.

Hence, there comes the interpolation concept that minimizes
the cost to some extent.

The earlier work on custom interpolation introduced a
resource annotator that instruments the program and
generates multiple meta programs (LLVM IRs) in order to
generate optimal mc/dc-based test cases.

3/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Introduction

The proposed approach leverages a Meta Program Generator
(MPG) to create a single meta program that encapsulates
SC-MCC sequences within ”klee assert” statements, aligned
with their corresponding predicates.

The effectiveness of this approach is demonstrated through
experiments on benchmark programs, comparing it with
traditional methods.

The results indicate improved efficiency and the generation of
a higher number of feasible SC-MCC sequences, making our
approach a promising advancement in software testing and
symbolic execution.

4/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Proposed Idea

Software testing plays a crucial role in ensuring the reliability
and robustness of software applications.

Among various testing methods, Dynamic Symbolic Execution
(DSE) has gained significant attention as it can systematically
explore different program paths and generate test cases auto-
matically.

In DSE [1], generating Multiple Condition Coverage with Short-
Circuit (SC-MCC) [3] sequences is essential to create meaning-
ful test cases.

However, the existing custom interpolation approach [2,4] gen-
erates multiple meta programs at the binary level, making it a
time-consuming process to execute each binary file in order to
obtain SC-MCC Score (%).

Our proposed approach aims to generate a single Meta Program
in source code format, specifically C programs, to avoid multiple
executions and generate the SC-MCC Score % efficiently.

5/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Proposed Idea

Figure 1: Framework of the proposed approach.

6/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Implementation Details

The framework of our proposed approach is depicted in Fig. 1.

It is to be noted that the existing custom interpolation approach
annotates the program at binary level i.e., KLEE/TracerX com-
piled version – LLVM-IR, whereas the proposed approach gener-
ates a meta program in the source code format i.e., C program.

The traditional approach flow starts from compiling C program
using KLEE/TracerX which produces an LLVM IR.

Then, this LLVM-IR is given as input to the Resource Annota-
tor.

The Resource Annotator takes SC-MCC sequences as input
and then annotates the SC-MCC sequences of each predicate
into the LLVM-IR separately and thus generates Multiple Meta
Programs.

7/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Implementation Details

TheseMeta Programs upon executed with KLEE/TracerX, pro-
duces SC-MCC Test Case report.

Now, the proposed approach flow starts from Test Cases along
with the SC-MCC sequences being imparted intoMeta Program
Generator in order to generate a Single Meta Program.

The Meta Program Generator encloses the SC-MCC sequences
inside the klee assert statements and places these statements
just above its corresponding predicate.

Finally, the SC-MCC score is calculated by dividing the no. of
feasible sequences out of the total SC-MCC sequences.

Thus, the SC-MCC Score% is generated.

8/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Experimental Study

We performed the experiments on a 64-bit Ubuntu machine
with 8GB RAM and Intel (R) Core (TM)-i5 processor.

We considered 30 benchmark (Coolant, Pals and Psyco series)
programs to produce the results.

The results are shown in Table 1.

Columns 1, 2 and 3 contain the serial number of the programs,
the benchmark and their corresponding program name informa-
tion, respectively.

Column 4 constitutes the number of SC-MCC sequences that
are instrumented into the Meta Program(s).

Columns 5 and 6 contain the results of the traditional approach
(Custom-KLEE, Custom-TX) whereas Columns 7 and 8 corre-
spond to the proposed approach results (Meta-KLEE and Meta-
TX).

9/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Experimental Study

Table 1: Results for Custom-KLEE, Custom-TX, Meta-KLEE and
Meta-TX. Note: #TSeq: Total no. of SC-MCC sequences #FeasSeq:
No. of feasible SC-MCC sequences.

Custom-KLEE Custom-TX Meta-KLEE Meta-TX
Sl. No Benchmark Program #TSeq

Time #FeasSeq Time #FeasSeq Time #FeasSeq Time #FeasSeq
1 test33 3 3600 3 3600 3 3600 3 3600 3
2 test34 3 3600 3 3600 3 3600 3 3600 3
3 test35 3 3600 3 17 3 3600 3 31 3
4 test36 3 3600 3 381 3 3600 3 647 3
5

COOLANT

test37 3 3600 3 384 3 3600 3 668 3
7 pals1 9 55 6 48 6 19 6 17 6
8 pals2 9 53 6 47 6 19 6 18 6
9 pals3 9 54 6 51 6 18 6 17 6
10 pals4 24 2616 16 4 16 310 16 4 16
11 pals5 24 2438 16 4 16 315 16 5 16
12 pals6 24 2411 16 4 16 324 16 4 16
13 pals7 36 3600 4 2 24 2116 4 0 24
14 pals8 33 3600 6 2 22 1566 6 0 22
15 pals9 36 3600 6 2 22 1799 6 1 22
16 pals10 42 3600 10 74 14 448 10 27 16
20 pals14 60 3600 0 3600 0 3600 0 3600 16
21 pals15 60 3600 0 3600 0 3600 0 3600 14
22 pals16 60 3600 0 3600 0 3600 0 3600 14
23 pals17 18 3600 2 860 12 3600 2 224 12
24 pals18 36 3600 2 3600 0 3600 2 3600 16
25 pals19 60 3600 0 3600 0 3600 0 3600 16
26 pals22 18 378 12 42 12 65 12 23 12
27

PALS

pals23 18 370 12 41 12 63 12 21 12
28 Wtest1-B10 72 3600 0 3 6 3600 0 7 6
29 Wtest2-B10 88 3600 1 3600 23 3600 1 3600 39
30 Wtest4-B10 88 3600 1 3600 23 3600 1 1291 39

10/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Result Analysis

It can be noticed that out of 30 programs, the first five pro-
grams belong to the Coolant benchmark, the next 21 programs
belong to the Pals series programs and the remaining four pro-
grams belong to the Psyco series benchmark programs.

The time-out period set for the KLEE/TracerX execution is
3600s. The total no. of SC-MCC sequences instrumented is
highest (88) in the case of the Psyco series and the lowest (3)
is observed w.r.t., Coolant series.

The Custom-KLEE execution is timed out (3600s) for most of
the programs whereas the Meta-KLEE execution took less time
to complete the execution.

The least Custom-KLEE time out (53s) is observed w.r.t., pals2
program whereas the pals3 program finishes in less time in the
case of Meta-KLEE i.e., 18s.

The win cases of the Meta-KLEE over Custom-KLEE are high-
lighted in green colour.

Here, to highlight, the pals series has achieved good results i.e.,
15 out of 21 are win cases.

When feasible sequence (Custom-KLEE and Meta-KLEE) re-
sults are compared, the numbers are equal and hence no-win
cases.

11/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Result Analysis

Now, the efficiency of Custom-TX and Meta-TX is noticed to
be more or less the same.

Because, out of 30 programs, eight programs are timed-out
(3600s), two programs have the same number (4s), 9 programs
are efficient w.r.t., Custom-TX (highlighted in red colour) and
the remaining 11 programs are efficient w.r.t., Meta-TX (high-
lighted in green colour).

Thus, multiple verses single meta program didn’t work well with
the programs considered. However, the results are great when
feasible sequences are considered.

12/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Conclusion

Precisely, the Meta-TX generates more number of feasible
sequences than Custom-TX in the case of 12 programs.

These cases are highlighted in green colour corresponding to
the last column.

This proves the single meta-program generation contributes to
the greater number of feasible SC-MCC sequences.

13/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



Acknowledgement

This work is sponsored by IBITF, Indian Institute of Technology (IIT)
Bhilai, under the grant of PRAYAS scheme, DST, Government of
India.

14/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines



References

1 Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.
KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Imple-
mentation (San Diego, California) (OSDI’08). USENIX Asso-
ciation, USA, 209–224.

2 Sangharatna Godboley, Joxan Jaffar, Rasool Maghareh, and
Arpita Dutta. 2021. Toward Optimal Mc/Dc Test Case Gener-
ation. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, Den-
mark) (ISSTA 2021). Association for Computing Machinery,
New York, NY, USA, 505–516. https://doi.org/10.1145/
3460319.3464841

15/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines

https://doi.org/10.1145/3460319.3464841
https://doi.org/10.1145/3460319.3464841


References

3 Monika Rani Golla and Sangharatna Godboley. 2024. Auto-
mated SC-MCC Test Case Generation using Bounded Model
Checking for Safety-Critical Applications. Expert Systems with
Applications 238 (2024), 122033. https://doi.org/10.

1016/j.eswa.2023.122033

4 Joxan Jaffar, Rasool Maghareh, Sangharatna Godboley, and
Xuan-Linh Ha. 2020. TracerX: Dynamic Symbolic Execution
with Interpolation (Competition Contribu-tion). In Fundamen-
tal Approaches to Software Engineering, Heike Wehrheim and
Jordi Cabot (Eds.). Springer International Publishing, Cham,
530–534.

16/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines

https://doi.org/10.1016/j.eswa.2023.122033
https://doi.org/10.1016/j.eswa.2023.122033


Th
ank

Yo
u!

17/17 SC-MCC Test Case Generation using Dynamic Symbolic Execution Engines


	Introduction
	Proposed Idea
	Implementation Details
	Experimental Study
	Result Analysis
	Conclusion
	References

