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How to design the heuristic search that tries to generate new 
inputs, covering more syntax rules in the parsing code?
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Input: bitor a

Token Sequence:  ⟨T_borOp,  T_ID⟩ 
Path Condition:  
T[0] ≠ T_addOp ∧ T[0] ≠ T_multiOp ∧
T[0] ≠ T_rfhiftOp ∧ T[0] = T_borOp ∧

T[1] = T_ID  
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We prefer to select the unexplored branches that 
have smaller token indexes in priority, which 
make it more easier to generate different token 
prefixes.

Input: bitor a

Token Sequence:  ⟨T_borOp,  T_ID⟩ 
Path Condition:  
T[0] ≠ T_addOp ∧ T[0] ≠ T_multiOp ∧
T[0] ≠ T_rfhiftOp ∧ T[0] = T_borOp ∧

T[1] = T_ID  

New Path Condition:  
T[0] = T_addOp



3.2 Grammar Synthesis

How to learn better grammars with as few 
iterations as possible?

5

Online Input 
Grammar Learning

Valid 
Token 

Sequence
Grammar

Token-level 
Grammar Synthesis

New input specified by Grammar

Input



5

Valid Input: a+a+1

Token Sequence: 
⟨T_ID, T_OP, T_ID, T_OP, T_NUM⟩

Character-level 
Context-free Grammar
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• for Java compiler Janino, on average, we achieve a 50.92% increase in statement 
coverage under the BFS strategy, and a 57.68%  increase in statement coverage 
under the DFS strategy. 

• for C compiler CLoli, on average, we achieve a 289.57% under BFS strategy, and 
a 342.09%  increase in statement coverage under the DFS strategy. 

Relative increase compared to 
GADSE under DFS

Relative increase compared to 
GADSE under BFS

4. Results
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