
4th International KLEE Workshop on Symbolic Execution

15-16 April 2024, Lisbon, Portugal, Co-located with ICSE 2024

Poster: Input Grammar Oriented
Symbolic Execution

Weijiang Hong (hongweijiang17@nudt.edu.cn)

joint work with Ke Ma, Yunlai Luo, Zhenbang Chen, Yufeng Zhang and Ji Wang

College of Computer, NUDT& College of Computer Science and Electronic Engineering, HNU, China

1. Background

Input

Parsing
Code

Valid Input

Application
Logic Code

Output

Software

1

1. Background

Input

Parsing
Code

Valid Input

Application
Logic Code

Output

Software

Input Error

Low Coverage

Missed Bugs

1

1. Background

Input

Parsing
Code

Valid Input

Application
Logic Code

Output

Software

Input Error

The underlying issue is that symbolic execution lacks awareness
of the program’s input format grammar.

Low Coverage

Missed Bugs

1

Symbolic Execution

Grammar Learning

2. Key Idea

The underlying issue is that symbolic execution lacks awareness
of the program’s input format grammar.

2

Symbolic Execution

Grammar Learning

Grammar
Refinement

2. Key Idea

The underlying issue is that symbolic execution lacks awareness
of the program’s input format grammar.

2

Symbolic Execution

Grammar Learning

Aid in Input
Generation

Grammar
Refinement

2. Key Idea

The underlying issue is that symbolic execution lacks awareness
of the program’s input format grammar.

2

“Interesting”
Token Sequence

Token
Sequence

Token-based
Symbolic Execution

[ISSTA’21]

Input

Heuristic
Search

New input generated by Constraint Solving

Coverage

3. Framework
3

[ISSTA’21] Grammar-agnostic symbolic

execution by token symbolization

Online Input
Grammar Learning

“Interesting”
Token Sequence

Token
Sequence

Valid
Token

Sequence

Token-based
Symbolic Execution

Grammar

[ISSTA’21]

Input

Heuristic
Search

New input generated by Constraint Solving

Token-level
Grammar Synthesis

New input specified by Grammar

Coverage

3. Framework
3

[ISSTA’21] Grammar-agnostic symbolic

execution by token symbolization

3.1 Heuristic Search

“Interesting”
Token Sequence

Token
Sequence

Token-based
Symbolic Execution

[ISSTA’21]

Input

Heuristic
Search

New input generated by Constraint Solving

Coverage

How to design the heuristic search that tries to generate new
inputs, covering more syntax rules in the parsing code?

4

[ISSTA’21] Grammar-agnostic symbolic

execution by token symbolization

T0

T0

T0

T0

T1

3.1 Heuristic Search
4

Input: bitor a

Token Sequence: ⟨T_borOp, T_ID⟩
Path Condition:
T[0] ≠ T_addOp ∧ T[0] ≠ T_multiOp ∧
T[0] ≠ T_rfhiftOp ∧ T[0] = T_borOp ∧

T[1] = T_ID

T0

T0

T0

T0

T1

3.1 Heuristic Search
4

We prefer to select the unexplored branches that
have smaller token indexes in priority, which
make it more easier to generate different token
prefixes.

Input: bitor a

Token Sequence: ⟨T_borOp, T_ID⟩
Path Condition:
T[0] ≠ T_addOp ∧ T[0] ≠ T_multiOp ∧
T[0] ≠ T_rfhiftOp ∧ T[0] = T_borOp ∧

T[1] = T_ID

New Path Condition:
T[0] = T_addOp

3.2 Grammar Synthesis

How to learn better grammars with as few
iterations as possible?

5

Online Input
Grammar Learning

Valid
Token

Sequence
Grammar

Token-level
Grammar Synthesis

New input specified by Grammar

Input

5

Valid Input: a+a+1

Token Sequence:
⟨T_ID, T_OP, T_ID, T_OP, T_NUM⟩

Character-level
Context-free Grammar

Token-level
Context-free Grammar

Token-level
Regular Expressions

3.2 Grammar Synthesis

Online Input
Grammar Learning

“Interesting”
Token Sequence

Token
Sequence

Valid
Token

Sequence

Token-based
Symbolic Execution

Grammar

[ISSTA’21]

Input

Heuristic
Search

New input generated by Constraint Solving

Token-level
Grammar Synthesis

New input specified by Grammar

Coverage

3. Framework
6

• for Java compiler Janino, on average, we achieve a 50.92% increase in statement
coverage under the BFS strategy, and a 57.68% increase in statement coverage
under the DFS strategy.

• for C compiler CLoli, on average, we achieve a 289.57% under BFS strategy, and
a 342.09% increase in statement coverage under the DFS strategy.

Relative increase compared to
GADSE under DFS

Relative increase compared to
GADSE under BFS

4. Results
7

Thank you!
Q & A

