Imperial College London

KLEE Mixed Point 15/04/2024

Mixed Fixed-Point and Floating-Point Symbolic Execution

Thom Hughes, Daniel Schemmel, Martin Nowack, Cristian Cadar

KLEE Mixed Point

15/04/2024

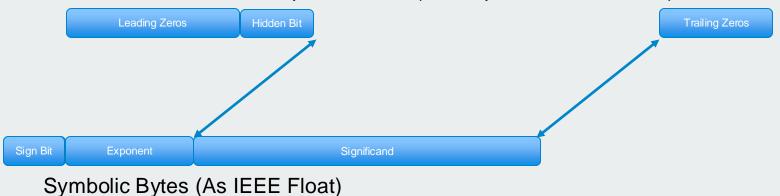
Imperial College London

Motivation

- KLEE currently concretizes floating-point operations
 - One arbitrary model chosen
- Exact floating-point reasoning is computationally expensive
 - As demonstrated in KLEE float paper (Liew et al. 2017)

Imperial College London

KLEE Mixed Point


15/04/2024

Our Approach

- Approximate using fixed-point numbers during solving
- Don't sacrifice accuracy during concrete execution

Imperial College London

Transformation Between Representations

Fixed Point Representation (Size Specified At Runtime)

Aggregated Runtime, Coverage & Effectiveness

Implementation	Branches Covered	Runtime (mins)	True Positives
KLEE Mixed Point	1 420	219	11
KLEE Float	1 564	784	20
KLEE Mainline	688	37	1

KLEE Mixed Point

15/04/2024

Imperial College London

Summary

- Mixed approach succeeds in sacrificing accuracy for speed
 - Only with symbolic floating-point expressions
- Ongoing work
 - long double support
 - sqrt implementation unfinished